首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
张峰 《中国光学》2014,7(4):616-621
为实现纳米级面形精度光学平面镜的高效精密抛光,提出了一种由传统环带抛光技术和先进离子束抛光技术相结合的组合式加工方法。介绍了环带抛光技术和离子束抛光技术的原理,通过实验研究了离子束抛光的材料去除函数,并采用这种组合抛光方法对口径为150 mm的平面镜进行抛光,抛光后平面镜的面形误差和表面粗糙度分别达到1.217 nm RMS和0.506 nm RMS。实验结果表明,这种组合抛光技术适合纳米级面形精度光学平面镜的加工。  相似文献   

2.
通过一空间相机光学系统中某透镜的高次非球面表面加工过程,提出了一种基于小磨头数控光学表面成型技术(CCOS,Computercontrolopticalsurfacing)和非球面轮廓检验、零位补偿检验技术的中等口径高次非球面光学表面的加工、检测方法,并且给出了补偿器实际光学设计结果。文中采用这种方法加工的高次非球面表面,最终精度优于1λP V(λ=632.8nm),满足了设计要求。对这种技术的适用范围进行了简明的讨论。  相似文献   

3.
空间太阳望远镜(SST)的装校需要一个倒置的直径为1m的平面镜,此平面镜的面形精度决定了SST的装校成败。平面镜的支撑采用滑轮砝码机构,具有18个牵引点,每个牵引点的牵引力是独立可调的。在此支撑下,利用有限元分析方法分析了平面镜的变形情况,提出了用主动光学原理对牵引力大小进行优化的方法,计算出了保持平面镜具有良好面形时所需要的牵引力的大小。采用Ritchey_Common方法对平面镜进行了测量。测量结果表明,平面镜面形精度的均方根值优于λ/30(λ=633nm),满足了SST的装校要求。  相似文献   

4.
反应烧结碳化硅平面反射镜的光学加工   总被引:7,自引:0,他引:7  
介绍了100mm口径反应烧结碳化硅平面反射镜的光学加工工艺流程。按照流程依次介绍了在粗磨成形、细磨抛光和精磨抛光过程中使用的机床、磨具和磨料以及采用的工艺参数和检测方法。介绍了在光学加工各个步骤中应注意的问题。展示了加工后反应烧结碳化硅平面反射镜的实物照片。给出了面形精度和表面粗糙度的检测结果:面形精度(95%孔径)均方根值(RMS)为0.030λ(λ=632.8nm),表面粗糙度RMS值达到了1.14nm(测量区域大小为603 6μmⅹ448 4μm)。  相似文献   

5.
应用离子束进行光学镜面确定性修形的实现   总被引:9,自引:3,他引:6  
为了克服传统光学镜面抛光方法的缺点,提出了应用离子束进行光学镜面修形的方法.介绍了离子束修形技术的原理和方法,并对离子束修形中涉及的关键技术进行了讨论.在自研的离子束修形设备上对一块直径φ98 mm的微晶玻璃平面样件进行了离子束修形试验,经过两次的迭代修形使其面形精度均方根误差由初始的0.136λ提高到0.010λ(λ=632.8nm),平均每次迭代的面形收敛率达到3.7.实验结果表明,应用离子束进行光学镜面修形无边缘效应、面形收敛快、加工精度高;由于离子束修形技术去除材料过程自身的特点,使数控离子束修形技术对非球面的加工和对平面的加工难度相当.  相似文献   

6.
仪器的工作直径为φ146毫米。仪器配有三块标准平面镜, 第一标准镜的精度为0.02微米(λ/30),第二、三标准镜的精度为0.03微米(λ/20)。仪器有He-Ne激光、钠光和贡光三种光源,可随意  相似文献   

7.
反应烧结碳化硅球面反射镜的光学加工与检测   总被引:8,自引:0,他引:8  
介绍了250mm口径、4200mm曲率半径的反应烧结碳化硅球面反射镜光学加工和检测的工艺流程;并按照流程依次介绍了在研磨成型、细磨抛光和精抛光过程中使用的机床、磨具、磨料及采用的工艺参数和检测方法。介绍了在光学加工和检测各个步骤中应注意的问题。展示了加工后250mm口径反应烧结碳化硅球面反射镜的实物照片,并给出了面形精度和表面粗糙度的检测结果:面形精度(95%孔径)均方根值(RMS)为0.037波长(λ=632.8nm),表面粗糙度RMS值达到1.92nm(测量区域大小为603.6ⅹ448.4μm)。  相似文献   

8.
<正> 随着现代光学仪器的发展,往往在仪器中采用铜制光学元件,铜面平面镜就是其中的一种。由于铜面平面镜对面形、光洁度要求高。其加工工艺性也不同于光学玻璃,在加工时必然会出现新问题。通过实践,我们对铜面平面镜加工工艺有了初步的认识。现对我们试制的铜面平面镜简述其细磨抛  相似文献   

9.
为了解决大口径光学元件磁流变高精度加工问题,基于矩阵运算模型,提出了SBB(Subspace Barzilai and Borwein)最小非负二乘与自适应Tikhonov正则化相结合的驻留时间快速求解方法。同时,在一次收敛中采用双去除函数优化螺旋线轨迹下光学元件的加工,保证中心区域与全口径面形精度一致。仿真表明该算法与常用Lawson-Hanson最小非负二乘法相比,计算精度一致且求解效率大幅提高。对Φ600mm以彗差为主的光学表面模拟加工,峰谷(PV)值和均方根(RMS)值从初始的2.712λ与0.461λ中心区域全局一致收敛到0.306λ和0.0199λ(λ=632.8nm)。因此,提出的算法能够在有效保证面形收敛精度的同时快速获得稳定可靠的驻留时间分布,为磁流变抛光应用于大口径光学元件提供有力支持。  相似文献   

10.
林维豪  罗红心  宋丽  张翼飞  王劼 《光学学报》2012,32(9):912005-143
为实现同步辐射用光学元件面形的绝对检测,发展了镜面旋转对称三平板检测法。该方法将菲佐干涉法检测到的波前函数关于y轴分解成镜面对称部分与镜面非对称部分,再利用N次旋转取平均值消除镜面非对称部分,从而通过计算获得待测平面的绝对面形分布。推导了镜面旋转对称法检测矩形平面镜面形的公式,应用该方法设计了高精度矩形平面镜的测试实验,并进行了误差分析。实验结果表明,与传统三平板绝对测量方法相比较,两种方法在高度轮廓误差和斜率误差方面的计算结果都符合较好,其对比后的残差均方根(RMS)值分别为λ/500(λ=632.8nm)与0.93μrad。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号