首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
梁彬  程建春 《中国物理快报》2007,24(6):1607-1610
Based on fuzzy logic (FL) and genetic algorithm (GA), we present an optimization method to obtain the optimal acoustic attenuation of a longitudinal acoustic wave propagating in a weakly compressible medium permeated with air bubbles. In the optimization, the parameters of the size distribution of bubbles in the medium are optimized for providing uniformly high acoustic attenuation in the frequency band of interest. Compared with other traditional optimization methods, the unique advantage of the present method is that it can locate the global optimum quickly and effectively in need of knowing the mathematical model precisely. As illustrated by a numerical simulation, the method is effective and essential in enhancing the acoustic attenuation of such a medium in an optimal manner. The bubbly medium with optimized structural parameters can effectively attenuate longitudinal waves at intermediate frequencies with an acoustic attenuation approximating a constant value of lO(dB/cm). Such bubbly media with optimal acoustic attenuations may be applied to design acoustic absorbent by controlling broader attenuation band and higher efficiency.  相似文献   

2.
梁彬  朱哲民  程建春 《中国物理》2006,15(2):412-421
Based on the modification of the radial pulsation equation of an individual bubble, an effective medium method (EMM) is presented for studying propagation of linear and nonlinear longitudinal acoustic waves in viscoelastic medium permeated with air bubbles. A classical theory developed previously by Gaunaurd (Gaunaurd GC and \"{U}berall H, {\em J. Acoust. Soc. Am}., 1978; 63: 1699--1711) is employed to verify the EMM under linear approximation by comparing the dynamic (i.e. frequency-dependent) effective parameters, and an excellent agreement is obtained. The propagation of longitudinal waves is hereby studied in detail. The results illustrate that the nonlinear pulsation of bubbles serves as the source of second harmonic wave and the sound energy has the tendency to be transferred to second harmonic wave. Therefore the sound attenuation and acoustic nonlinearity of the viscoelastic matrix are remarkably enhanced due to the system's resonance induced by the existence of bubbles.  相似文献   

3.
Propagation of an acoustic wave in a soft medium permeated with air bubbles is theoretically investigated by using a self-consistent approach. The soft medium is assumed to be viscoelastic to estimate the effect of acoustic absorption on the acoustic localization in such a medium. The oscillation phases of bubbles are examined by employing a phase diagram method. A collective oscillation of the bubbles is observed once the acoustic localization occurs, which is known as a phenomenon of 'phase transition ', and such a phenomenon persists as we manually increase the viscosity factor of the soft medium. Therefore it is proven that the phenomenon of phase transition may serve as a unique criterion to effectively identify acoustic localization in a bubbly soft medium even in the presence of viscosity, and the directions of the phase vectors help to determine the extent of localization. This is of practical significance for experimental research studying the acoustic localization in such a medium, for which the presence of viscosity generally causes great ambiguity in distinguishing the effects of localization and acoustic absorption.  相似文献   

4.
Based on an equivalent medium approach, this paper presents a model describing the nonlinear propagation of acoustic waves in a viscoelastic medium containing cylindrical micropores. The influences of pores' nonlinear oscillations on sound attenuation, sound dispersion and an equivalent acoustic nonlinearity parameter are discussed. The calculated results show that the attenuation increases with an increasing volume fraction of micropores. The peak of sound velocity and attenuation occurs at the resonant frequency of the micropores while the peak of the equivalent acoustic nonlinearity parameter occurs at the half of the resonant frequency of the micropores. Furthermore, multiple scattering has been taken into account, which leads to a modification to the effective wave number in the equivalent medium approach. We find that these linear and nonlinear acoustic parameters need to be corrected when the volume fraction of micropores is larger than 0.1%.  相似文献   

5.
A modified finite-difference time-domain (FDTD) method is proposed for the sound field simulation of the thermoacoustic tomography (TAT) in the acoustic speed inhomogeneous medium. First, the basic equations of the TAT are discretized to difference ones by the FDTD. Then the electromagnetic pulse, the excitation source of the TAT, is modified twice to eliminate the error introduced by high frequency electromagnetic waves. Computer simulations are carried out to validate this method. It is shown that the FDTD method has a better accuracy than the commonly used time-of-flight (TOF) method in the TAT with the inhomogeneous acoustic speed. The error of the FDTD is ten times smaller than that of the TOF in the simulation for the acoustic speed difference larger than 50%. So this FDTD method is an efficient one for the sound field simulation of the TAT and can provide the theoretical basis for the study of reconstruction algorithms of the TAT in the acoustic heterogeneous medium.  相似文献   

6.
梁彬  邹欣晔  程建春 《中国物理 B》2010,19(9):94301-094301
We study via numerical experiments the localisation property of an acoustic wave in a viscoelastic soft medium containing randomly-distributed air bubbles. The behaviours of the oscillation phases of bubbles are particularly investigated in various cases for distinguishing efficiently the acoustic localisation from the effects of acoustic absorption caused by the viscosity of medium. The numerical results reveal the phenomenon of `phase transition' characterized by an unusual collective oscillation of bubbles, which is an effective criterion to unambiguously identify the acoustic localisation in the presence of viscosity. Within the localisation region, the phenomenon of phase transition persists, and a remarkable decrease in the fluctuation of the oscillation phases of bubbles is observed. The localisation phenomenon will be impaired by the enhancement of the viscosity factors, and the extent to which the acoustic wave is localised may be determined by appropriately analyzing the values of the oscillation phases or the amount of reduction of the phase fluctuation. The results are particularly significant for the practical experiments in an attempt to observe the acoustic localisation in such a medium, which is in general subjected to the interference of the great ambiguity resulting from the effect of acoustic absorption.  相似文献   

7.
We investigate the nonlinear dynamics of multi-dimensional optical pulses propagating in an isotropic selfdefocusing medium,Using a method of multiple-scales we show that the nonlinear evolution of the pulses is governed by Davey-Stewartson equations.Dromion-like nonlinear localized structures(high-dimensional Optical solitons) excited from a continuous wave badckground and decaying in all spatial directions are predicted through the interaction between a wavepacket superposed by short-wavelength components and a long-wavelength mean field generated by an optical rectification.  相似文献   

8.
By using the perturbation method,effective nonlinear direct current(DC) and alternating current(AC) responses of nonlinear composites with spherical coated inclusions randomly embedded in a host medium are studied under the action of an external electric field E a = E 0 + E 1 sin ωt + E 3 sin 3ωt with different amplitudes and frequencies.The local potentials of composites at all harmonics are given in the inclusion particles and the host regions.All effective nonlinear responses to composites and the relationship between the effective nonlinear responses at all harmonics are also deduced for the spherical coated inclusions in a dilute limit.  相似文献   

9.
The shear-horizontal(SH) waves excited by the shear source in a borehole are easy to analyze due to the simple waveform. The borehole-side structures make the formation properties discontinuous. We consider a cylindrical double layer structure and study the borehole shear-horizontal and transverse-electric(SH-TE) seismoelectric waves. We first derive the expressions of the basic field quantities, and simulate the acoustic field and electric field using the real axis integral method. Compared with the wave fields of an infinitely homogeneous porous medium outside the borehole, the cylindrical layered structure makes the multi-mode cylindrical Love waves and their accompanying electric fields excited.Next, in order to study the interface response law of the inducing electric fields, we use the secant integral method to calculate the interface converted electromagnetic waves and analyze the causes of each component. It is found that an interface response occurs each time the SH wave impinges the interface in the layered porous medium. The results show that the SH-TE mode has a potential application for borehole-side interface detection in geophysical logs.  相似文献   

10.
A numerical model is developed to simulate the acoustic field in heterogeneous tissue from a medical linear transducer.The coupled full-wave equation for nonlinear ultrasound is solved using a staggered-grid finite difference time domain method.The distribution of acoustic pressure and power in human abdominal wall with heterogeneities in sound speed,density,and nonlinear parameter are obtained.Compared with homogeneous medium,when sound speed in tissue is uniform and density unchanged,the acoustic energy decreases only1.8 dB in the focal region;when density in tissue is uniform and sound speed unchanged,the energy decreases 3.8 dB in the focal region,which is almost the same as heterogeneous tissue.Thus,the primary factor of the aberration of focused beam is the heterogeneous distribution of the tissue sound speed.  相似文献   

11.
A wave-vector-frequency-domain method is presented to describe one-directional forward or backward acoustic wave propagation in a nonlinear homogeneous medium. Starting from a frequency-domain representation of the second-order nonlinear acoustic wave equation, an implicit solution for the nonlinear term is proposed by employing the Green's function. Its approximation, which is more suitable for numerical implementation, is used. An error study is carried out to test the efficiency of the model by comparing the results with the Fubini solution. It is shown that the error grows as the propagation distance and step-size increase. However, for the specific case tested, even at a step size as large as one wavelength, sufficient accuracy for plane-wave propagation is observed. A two-dimensional steered transducer problem is explored to verify the nonlinear acoustic field directional independence of the model. A three-dimensional single-element transducer problem is solved to verify the forward model by comparing it with an existing nonlinear wave propagation code. Finally, backward-projection behavior is examined. The sound field over a plane in an absorptive medium is backward projected to the source and compared with the initial field, where good agreement is observed.  相似文献   

12.
The problem of the nonlinear interaction between the fourth sound and an acoustic wave propagating in a porous medium filled with superfluid helium is solved. Based on the Landau equations of quantum fluid dynamics and on the Biot theory of mechanical waves in a porous medium, nonlinear wave equations are derived for studying the aforementioned interaction. An expression is obtained for the vertex that determines the excitation of an acoustic wave by two waves of the fourth sound. The possibility of an experimental observation of this process is estimated.  相似文献   

13.
We report measurements of acoustic phonon emission from a weakly coupled AlAs/GaAs superlattice (SL) under vertical electron transport. The phonons were detected using superconducting bolometers. A peak (resonance) was observed in emission parallel to the SL growth axis when the electrical energy drop per SL period matched the energy of the first SL mini-Brillouin zone-center phonon mode. This peak was mirrored by an increase of the differential conductance of the SL. These results are evidence for stimulated emission of terahertz phonons as previously predicted theoretically and suggest that such a SL may form the basis of a SASER (sound amplification by stimulated emission of radiation) device.  相似文献   

14.
Anomalous delay of phonons reflected from the surface of a superlattice   总被引:2,自引:0,他引:2  
We study theoretically the propagation of acoustic phonons in a superlattice (SL) with a free surface. A phonon incident normally on the SL from a substrate is perfectly reflected, but it comes back to the substrate either with a time delay or with a time advance. Specifically the time delay is enhanced considerably if the frequency of the incident phonon coincides with an eigenfrequency of the vibrational modes localized at the surface of the SL. This suggests the observability of the surface vibrational modes by a time-resolved phonon reflection experiment.  相似文献   

15.
The nonlinear propagation of an initially harmonic acoustic wave in a microinhomogeneous medium containing defects with quadratic hysteretic nonlinearity and relaxation is studied by the perturbation method. The frequency dependences of the effective nonlinearity parameters are determined for the self-action of the quasi-harmonic acoustic wave and the higher harmonic generation processes.  相似文献   

16.
In the present study, a hybrid method is proposed for predicting the acoustic performance of a silencer for a nonlinear wave. This method is developed by combining two models: (i) a frequency-domain model for the computation of sound attenuation due to a silencer in a linear regime and (ii) a wavenumber space model for the prediction of the nonlinear time-evolution of finite amplitudes of the acoustic wave in a uniform duct of the same length as the silencer. The present method is proposed under the observation that the physical process of the nonlinear sound attenuation phenomenon of a silencer may be decoupled into two distinct mechanisms: (a) a linear acoustic energy loss that owes to the mismatch in the acoustic impedance between reactive elements and/or the sound absorption of acoustic liners in a silencer; (b) a nonlinear acoustic energy loss that is due to the energy-cascade phenomenon that arises from the nonlinear interaction between components of different frequencies. To establish the validity of the present model for predicting the acoustic performance of silencers, two model problems are considered. First, the performance of simple expansion mufflers with nonlinear incident waves has been predicted. Second, proposed method is applied for computing nonlinear acoustic wave propagation in the NASA Langley impedance duct configuration with ceramic tubular liner (CT57). Both results obtained from the hybrid models are compared with those from computational aero-acoustic techniques in a time-space domain that utilize a high-order finite-difference method. Through these comparisons, it is shown that there are good agreements between the two predictions. The main advantage of the present method is that it can effectively compute the nonlinear acoustic performance of silencers in nonlinear regimes without time-space domain calculations that generally entail a greater computational burden.  相似文献   

17.
We investigate the acoustic wave propagation in bubbly liquid inside a pilot sonochemical reactor which aims to produce antibacterial medical textile fabrics by coating the textile with ZnO or CuO nanoparticles. Computational models on acoustic propagation are developed in order to aid the design procedures. The acoustic pressure wave propagation in the sonoreactor is simulated by solving the Helmholtz equation using a meshless numerical method. The paper implements both the state-of-the-art linear model and a nonlinear wave propagation model recently introduced by Louisnard (2012), and presents a novel iterative solution procedure for the nonlinear propagation model which can be implemented using any numerical method and/or programming tool. Comparative results regarding both the linear and the nonlinear wave propagation are shown. Effects of bubble size distribution and bubble volume fraction on the acoustic wave propagation are discussed in detail. The simulations demonstrate that the nonlinear model successfully captures the realistic spatial distribution of the cavitation zones and the associated acoustic pressure amplitudes.  相似文献   

18.
A new approach for characterizing high intensity focused ultrasound (HIFU) transducers is presented. The technique is based upon the acoustic streaming field generated by absorption of the HIFU beam in a liquid medium. The streaming field is quantified using digital particle image velocimetry, and a numerical algorithm is employed to compute the acoustic intensity field giving rise to the observed streaming field. The method as presented here is applicable to moderate intensity regimes, above the intensities which may be damaging to conventional hydrophones, but below the levels where nonlinear propagation effects are appreciable. Intensity fields and acoustic powers predicted using the streaming method were found to agree within 10% with measurements obtained using hydrophones and radiation force balances. Besides acoustic intensity fields, the streaming technique may be used to determine other important HIFU parameters, such as beam tilt angle or absorption of the propagation medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号