首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In this work, we consider decoherence of a central spin by a spin bath. In order to study the nonperturbative decoherence regimes, we develop an efficient mean-field-based method for modeling the spin-bath decoherence, based on the representation of the central spin density matrix. The method can be applied to longitudinal and transverse relaxation at different external fields. In particular, by modeling large-size quantum systems (up to 16 000 bath spins), we make controlled predictions for the slow long-time decoherence of the central spin.  相似文献   

2.
赵虎  李铁夫  刘其春  张颖珊  刘建设  陈炜  Chen Wei 《物理学报》2014,63(22):220305-220305
超导量子比特的退相干时间是决定超导量子计算能否实现的重要指标之一. 文章以三维传输子量子比特(3D transmon)为研究对象, 在氧化硅衬底上制备了三维传输子量子比特, 并在超低温下(10 mK), 采用拉比振荡(Rabi oscillation)、能量弛豫(energy relaxation)、 拉姆齐条纹(Ramsey fringe)、自旋回波(spin echo)的方法, 对其进行了详细的退相干时间常数表征. 结果显示该量子比特的退相干时间在几百纳秒. 根据几种退相干时间的关系进行计算, 可以看出, 低频噪声目前不是影响量子比特退相干的最主要因素, 而氧化硅中的缺陷可能是样品退相干时间的主要瓶颈. 关键词: 三维传输子量子比特 拉比振荡 拉姆齐条纹 自旋回波  相似文献   

3.
The main source of decoherence for an electron spin confined to a quantum dot is the hyperfine interaction with nuclear spins. To analyze this process theoretically we diagonalize the central spin Hamiltonian in the high magnetic B-field limit. Then we project the eigenstates onto an unpolarized state of the nuclear bath and find that the resulting density of states has Gaussian tails. The level spacing of the nuclear sublevels is exponentially small in the middle of each of the two electron Zeeman levels but increases superexponentially away from the center. This suggests to select states from the wings of the distribution when the system is projected on a single eigenstate by a measurement to reduce the noise of the nuclear spin bath. This theory is valid when the external magnetic field is larger than a typical Overhauser field at high nuclear spin temperature.  相似文献   

4.
We exploit the pumped spin-current and current noise spectra under equilibrium conditions in a single quantum dot connected to two normal leads as an electrical scheme for detection of the electron spin resonance (ESR) and decoherence. We propose spin-resolved quantum rate equations with correlation functions in Laplace space for the analytical derivation of the zero-frequency auto- and cross-shot noise spectra of charge and spin current. Our results show that in the strong Coulomb blockade regime, ESR-induced spin flip generates a finite spin current and quantum partition noises in the absence of net charge transport. Moreover, spin shot noise is closely related to the magnetic Rabi frequency and decoherence and would be a sensitive tool to measure them.  相似文献   

5.
By virtue of a superconducting charge qubit, we derive the off-diagonal matrix operator and investigate the decoherence of the system in different regimes coupled to, respectively, the boson bath and the spin bath. It is found that the two different baths make a bit of difference on the decay of the system at low but finite temperature and the decoherence of the system is most closely linked with the regime as well as the coupling strength. Therefore, by optimizing some reasonable parameters, we can suppress appropriately the decoherence of a given quantum system.  相似文献   

6.
Silicon is promising for spin-based quantum computation because nuclear spins, a source of magnetic noise, may be eliminated through isotopic enrichment. Long spin decoherence times T2 have been measured in isotope-enriched silicon but come far short of the T2=2T1 limit. The effect of nuclear spins on T2 is well established. However, the effect of background electron spins from ever present residual phosphorus impurities in silicon can also produce significant decoherence. We study spin decoherence decay as a function of donor concentration, 29Si concentration, and temperature using cluster expansion techniques specifically adapted to the problem of a sparse dipolarly coupled electron spin bath. Our results agree with the existing experimental spin echo data in Si:P and establish the importance of background dopants as the ultimate decoherence mechanism in isotope-enriched silicon.  相似文献   

7.
The interaction of solid-state qubits with environmental degrees of freedom strongly affects the qubit dynamics, and leads to decoherence. In quantum information processing with solid-state qubits, decoherence significantly limits the performances of such devices. Therefore, it is necessary to fully understand the mechanisms that lead to decoherence. In this review, we discuss how decoherence affects two of the most successful realizations of solid-state qubits, namely, spin qubits and superconducting qubits. In the former, the qubit is encoded in the spin 1/2 of the electron, and it is implemented by confining the electron spin in a semiconductor quantum dot. Superconducting devices show quantum behaviour at low temperatures, and the qubit is encoded in the two lowest energy levels of a superconducting circuit. The electron spin in a quantum dot has two main decoherence channels, a (Markovian) phonon-assisted relaxation channel, due to the presence of a spin–orbit interaction, and a (non-Markovian) spin bath constituted by the spins of the nuclei in the quantum dot that interact with the electron spin via the hyperfine interaction. In a superconducting qubit, decoherence takes place as a result of fluctuations in the control parameters, such as bias currents, applied flux and bias voltages, and via losses in the dissipative circuit elements.  相似文献   

8.
We propose and analyze an efficient high-dimensional quantum state transfer protocol in an XX coupling spin network with a hypercube structure or chain structure. Under free spin wave approximation, unitary evolution results in a perfect high-dimensional quantum swap operation requiring neither external manipulation nor weak coupling. Evolution time is independent of either distance between registers or dimensions of sent states, which can improve the computational efficiency. In the low temperature regime and thermodynamic limit, the decoherence caused by a noisy environment is studied with a model of an antiferromagnetic spin bath coupled to quantum channels via an Ising-type interaction. It is found that while the decoherence reduces the fidelity of state transfer, increasing intra-channel coupling can strongly suppress such an effect. These observations demonstrate the robustness of the proposed scheme.  相似文献   

9.
We investigate heavy-hole spin relaxation and decoherence in quantum dots in perpendicular magnetic fields. We show that at low temperatures the spin decoherence time is 2 times longer than the spin relaxation time. We find that the spin relaxation time for heavy holes can be comparable to or even longer than that for electrons in strongly two-dimensional quantum dots. We discuss the difference in the magnetic-field dependence of the spin relaxation rate due to Rashba or Dresselhaus spin-orbit coupling for systems with positive (i.e., GaAs quantum dots) or negative (i.e., InAs quantum dots) g factor.  相似文献   

10.
In many realizations of electron spin qubits the dominant source of decoherence is the fluctuating nuclear spin bath of the host material. The slowness of this bath lends itself to a promising mitigation strategy where the nuclear spin bath is prepared in a narrowed state with suppressed fluctuations. Here, this approach is realized for a two-electron spin qubit in a GaAs double quantum dot and a nearly tenfold increase in the inhomogeneous dephasing time T?* is demonstrated. Between subsequent measurements, the bath is prepared by using the qubit as a feedback loop that first measures its nuclear environment by coherent precession, and then polarizes it depending on the final state. This procedure results in a stable fixed point at a nonzero polarization gradient between the two dots, which enables fast universal qubit control.  相似文献   

11.
I show that the decoherence in a system of degenerate two-level atoms interacting with a bosonic heat bath is for any number of atoms governed by a generalized Hamming distance (called "decoherence metric") between the superposed quantum states, with a time-dependent metric tensor that is specific for the heat bath. The decoherence metric allows for the complete characterization of the decoherence of all possible superpositions of many-particle states, and can be applied to minimize the overall decoherence in a quantum memory. For qubits which are far apart, the decoherence is given by a function describing single-qubit decoherence times the standard Hamming distance. I apply the theory to cold atoms in an optical lattice interacting with blackbody radiation.  相似文献   

12.
We have studied the effect of a non-Hermitian Bosonic bath on the dynamics of a two-level spin system. The non-Hermitian Hamiltonian of the bath is chosen such that it converges to the harmonic oscillator Hamiltonian when the non-Hermiticity is switched off. We calculate the dynamics of the spin system and found that the non-Hermiticity can have positive as well as negative effects on the coherence of the system. However, the decoherence can be completely eliminated by choosing the non-Hermiticity parameter and the phase of the system bath interaction appropriately. We have also studied the effect of this bath on the entanglement of a two-spin system when the bath is acting only on one spin.  相似文献   

13.
Understanding the mechanisms controlling the spin coherence of electrons in semiconductors is essential for designing structures for quantum computing applications. Using a pulsed electron paramagnetic resonance spectrometer, we measure spin echoes and deduce a spin coherence time (T2) of up to 3 mus for an ensemble of free two-dimensional electrons confined in a Si/SiGe quantum well. The decoherence can be understood in terms of momentum scattering causing fluctuating effective Rashba fields. Further confining the electrons into a nondegenerate (other than spin) ground state of a quantum dot can be expected to eliminate this decoherence mechanism.  相似文献   

14.
This paper considers a generalized spin star system which can be solved exactly, with the central spin-1/2 system embedded in an outer ring of N spin-1/2 particles(denoted as spin bath). In this model, in addition to the central-outer interaction, each pair of nearest neighbour of the bath interacts within themselves. The general expressions of the eigenstates as well as the eigenvalues of the model are derived with the use of the symmetries of system. It analyses the quantum state transfer and the dynamical behaviour of entanglement created during quantum communication. It also analyses the efficiency of the configuration regarded as quantum phase covariant clone or decoherence model. Some interesting results are discovered concerning the properties of quantum communication in this model.  相似文献   

15.
We have studied a system composed by two endohedral fullerene molecules. We have found that this system can be used as good candidate for the realization of quantum gates. Each of these molecules encapsules an atom carrying a spin, therefore they interact through the spin dipole interaction. We show that a phase gate can be realized if we apply static and time dependent magnetic fields on each encased spin. We have evaluated the operational time of a π-phase gate, which is of the order of ns. We made a comparison between the theoretical estimation of the gate time and the experimental decoherence time for each spin. The comparison shows that the spin relaxation time is much larger than the π-gate operational time. Therefore, this indicates that, during the decoherence time, it is possible to perform some thousands of quantum computational operations. Moreover, through the study of concurrence, we get very good results for the entanglement degree of the two-qubit system. This finding opens a new avenue for the realization of quantum computers.  相似文献   

16.
The effects of decoherence on quantum discord of two-qutrit system under the influence of multilocal, collective and global depolarising noises are investigated. Sudden change of quantum discord with the decoherence parameter and the initial state parameter occurs for the qutrits being coupled to multilocal or global depolarising noises. On the other hand, decoherence cannot induce sudden change of quantum discord when the system is collectively coupled to the depolarising noise. In addition, the local unitary transformation can alter the region in which the phenomenon of sudden change exists.  相似文献   

17.
The well-known increase of the decoherence rate with the temperature, for a quantum system coupled to a linear thermal bath, no longer holds for a different bath dynamics. This is shown by means of a simple classical nonlinear bath, as well as a quantum spin-boson model. The anomalous effect is due to the temperature dependence of the bath spectral profile. In the case of the second model, a link with the quantum Zeno effect is provided. The decoherence reduction via the temperature increase can be relevant for the design of quantum computers.  相似文献   

18.
We theoretically investigate the spin dynamics of a heavy hole confined to an unstrained III-V semiconductor quantum dot and interacting with a narrowed nuclear-spin bath. We show that band hybridization leads to an exponential decay of hole-spin superpositions due to hyperfine-mediated nuclear pair flips, and that the accordant single-hole-spin decoherence time T2 can be tuned over many orders of magnitude by changing external parameters. In particular, we show that, under experimentally accessible conditions, it is possible to suppress hyperfine-mediated nuclear-pair-flip processes so strongly that hole-spin quantum dots may be operated beyond the "ultimate limitation" set by the hyperfine interaction which is present in other spin-qubit candidate systems.  相似文献   

19.
王成杰  石发展  王鹏飞  段昌奎  杜江峰 《物理学报》2018,67(13):130701-130701
纳米级分辨率的磁场测量和成像是磁学中的一种重要研究手段.金刚石中的单个氮-空位点缺陷电子自旋作为一种量子传感器,具有灵敏度高、原子级别尺寸、可工作在室温等诸多优势,灵敏度可以达到单核自旋级别,空间分辨率达到亚纳米.将这种磁测量技术与扫描成像技术结合,能够实现高灵敏度和高分辨率的磁场成像,定量地重构出杂散场.这种新型的磁成像技术可以给出磁学中多种重要的研究对象如磁畴壁、反铁磁序、磁性斯格明子的结构信息.随着技术的发展,基于氮-空位点缺陷的磁成像技术有望成为磁性材料研究的重要手段.  相似文献   

20.
Rabi nutations and Hahn echo modulation of a single electron spin in a single defect center have been observed. The coherent evolution of the spin quantum state is followed via optical detection of the spin state. Coherence times up to several microseconds at room temperature have been measured. Optical excitation of the spin states leads to decoherence. Quantum beats between electron spin transitions in a single spin Hahn echo experiment are observed. A closer analysis reveals that beats also result from the hyperfine coupling of the electron spin to a single 14N nuclear spin. The results are analyzed in terms of a density matrix approach of an electron spin interacting with two oscillating fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号