首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用硫化助熔剂法制备了SrS:Eu,Mn和CaS:Eu,Mn荧光粉。与CaS相比,SrS基质材料的光激励发光峰位于610 nm,比前者更接近视觉敏感区。比较了不同基质材料的存储光和量,SrS基质材料存储能力强于CaS。同时Mn2+掺杂增大了碱土金属硫化物被存储的光子数量,有利于提高材料的存储性能。  相似文献   

2.
用共沉淀法制备了Y2O2S∶Eu3 ,Mg2 ,Ti4 红色长余辉材料。测量了材料的电子显微形貌、晶体结构和发射光谱。通过与固相法制备的Y2O2S∶Eu3 ,Mg2 ,Ti4 长余辉材料比较,发现两种方法都可以制备粒度基本相同的纯相Y2O2S基质晶体,但共沉淀法样品的颗粒结构更松散。研究了Eu3 浓度对两种方法制备样品的谱线发射强度的影响,通过比较共沉淀法和高温固相法制备的样品中Eu3 的5D1→7F3较高能级跃迁的587.6 nm谱线强度随Eu3 浓度的变化,发现共沉淀法更有利于Eu3 均匀进入Y2O2S基质晶格而形成有效的发光中心。  相似文献   

3.
采用基于高温固相的两步合成法,以BaSiO3为前驱体制备了Ba3Si6O9N4∶Eu2+荧光粉,主要研究了不同Eu2+掺杂浓度对Ba3Si6O9N4∶Eu2+荧光粉发光性能的影响机理,并与传统高温固相法制备的Ba3Si6O9N4∶Eu2+荧光粉的发光机理进行了对比分析。结果表明:与传统高温固相法相比,两步法制备的Ba3Si6O9N4∶Eu2+荧光粉具有更高的纯度和结晶度。Eu2+掺杂浓度大于9%时,两步法和传统高温固相法制备的样品都发生浓度猝灭现象。传统高温固相法与两步法制备Ba3Si6O9N4:Eu2+荧光粉的浓度猝灭机理一致,均是由于电偶极-电偶极相互作用造成的。在330nm的激发光下,两步法制备的Ba3Si6O9N4∶Eu2+荧光粉的发射光谱(峰值489nm)与传统的高温固相法(峰值512nm)相比,出现了蓝移的现象,更加接近于理论发射光谱中心(480nm)。能谱分析结果显示,两步法制备的荧光粉的元素组分更接近理论值,能有效降低晶格缺陷。两步法制备的Ba3Si6O9N4∶Eu2+荧光粉样品具有更好的热稳定性,更利于白光LED的应用。  相似文献   

4.
采用高温固相法制备了ACaPO4∶Eu2+,Nd3+(A=Li,K,Na)系列近红外发光材料,研究了材料中Eu2+对Nd3+的近红外发光的敏化作用。发现共掺Eu2+后,材料的Nd3+的近红外发光显著提高。同时考察了ACaPO4∶Eu2+可见荧光性能、ACaPO4∶Eu2+,Nd3+近红外荧光发光性能及其荧光寿命,研究了不同Eu2+的发射波长对Nd3+近红外发光的敏化效果,分析探讨了ACaPO4体系中Eu2+-Nd3+之间的能量传递机理。在ACaPO4(A=Li,K,Na)中,随基质的不同,Eu2+的发射峰有逐步红移的现象,与Nd3+的不同激发峰重叠程度也会发生明显的变化,表明Eu2+的荧光发射波长是影响能量传递的一个重要因素,可以推测发射波长处于500~550 nm之间的Eu2+对Nd3+近红外发光具有最佳的敏化效果。  相似文献   

5.
采用高温固相法合成了Ba2Ca(PO4)2:Eu2+蓝色荧光粉,研究了合成温度、合成时间、Ba/Ca比值以及Eu2+掺杂量等对材料的物相及发光特性等的影响.研究结果显示,合成温度为900/1200?C,合成时间为4 h时,可以获得纯相的Ba2Ca(PO4)2;以343 nm紫外线作为激发源时,Ba2Ca(PO4)2:Eu2+呈非对称的宽谱特征,主峰位于454 nm,分析认为,Eu2+在Ba2Ca(PO4)2中占据不同的晶体学格位,形成了不同的发光中心,造成材料呈非对称发射;监测454 nm发射峰,对应的激发光谱覆盖200—450 nm区域,主峰位于343 nm,且在长波紫外段(350—410 nm)有很强的激发带;增大Eu2+掺杂量,Eu2+在Ba2Ca(PO4)2中的发射出现了浓度猝灭现象,且材料的发射峰出现了明显的红移;减小基质中Ba/Ca配比,材料在绿色区域的发射逐渐增强,材料的发光颜色由蓝逐渐变为蓝绿色,分析认为,Eu2+进入Ba2Ca(PO4)2基质体系后,不但取代Ba2+的格位,而且取代Ca2+的格位,形成不同的发光中心,从而影响材料的发光特性.  相似文献   

6.
用高温固相法制备了Sr2SiO4∶Eu2+,Nd3+发光材料,研究了样品中Eu2+对Nd3+的近红外发光敏化.发现Sr2SiO4基质中Eu2+的存在可以大大增强Nd3+的特征近红外发光.通过对样品中不同位置Eu2+荧光激发和发射光谱、荧光寿命以及Nd3+荧光光谱的研究,对Eu2+向Nd3+能量传递的机理进行了分析.在S...  相似文献   

7.
采用高温固相法制备了KBaPO4:Eu3+红色发光材料,研究了Eu3+掺杂浓度、电荷补偿剂等对材料发光性质的影响,并利用X射线衍射及光谱等技术对材料的性能进行了表征.研究结果显示:在400 nm近紫外光激发下,材料呈多峰发射,分别由Eu3+的5D0→7FJ(J=0,1,2,3,4)能级跃迁产生,主峰位于621 nm|监测621 nm发射峰,所得激发光谱由O2-→Eu3+电荷迁移带(200~350 nm)和f-f高能级跃迁吸收带(350~450 nm)组成,主峰位于400 nm|改变Eu3+掺杂浓度,KBaPO4∶Eu3+材料的发射强度随之改变,Eu3+浓度为5 mol%时,强度最大|依据Dexter理论,得知引起浓度猝灭的原因为电偶极-电偶极相互作用|添加电荷补偿剂,可增强KBaPO4∶Eu3+材料的发射强度,其中以添加Li+,Cl-时,材料发射强度提高最明显.  相似文献   

8.
用简单的微乳液-微波法合成大小和形貌可控的Y2O3∶Eu3+纳米棒晶体。XRD结果表明,所制备样品为Y2O3∶Eu3+纯相,属于体心立方晶系。TEM结果表明,随着水乳比ω0从5变化到35时,粒子发光粉的形状由纳米颗粒状变为纳米棒,纳米棒的直径约为30~50 nm,纳米棒长约为200~300 nm。激发光谱和发射光谱分析表明,最大的激发带是位于254 nm的Eu3+-O2-电荷迁移带。最大发射峰位于611 nm,属于Eu3+的特征发射。Y2O3∶Eu3+纳米发光粉的发光强度随着ω0的增加而增强。发光寿命分析表明Y2O3∶Eu3+纳米棒中Eu3+的发光寿命为2.03 ms。在阴极射线发光真空装置中测得的I-V曲线表明Y2O3∶Eu3+纳米棒薄膜的启动电压仅1 300 V。同时,在2 000 V外加电压下可以清楚地观察到Y2O3∶Eu3+纳米棒的阴极射线发光为Eu3+离子的特征红光。  相似文献   

9.
采用湿法工艺在还原气氛下制备了CaS∶Eu2+,Sm3+光存储材料。研究了灼烧温度和灼烧时间对样品性能的影响。XRD图谱表明,样品在700℃—1200℃均形成CaS晶格。光谱分析表明,在紫外光(295nm)激发后,用980nm半导体激光照射样品,具有光激励发光现象,发射光谱峰值波长为649nm。  相似文献   

10.
采用高温固相法制备了一种适于近紫外光激发,发射绿光的Ba2B2P2O10∶Eu2+材料,并研究了材料的发光性质.Ba2B2P2O10∶Eu2+材料的发射光谱为一峰值位于522 nm的非对称单峰宽谱|监测522 nm发射峰,所得激发光谱覆盖300~450 nm,主峰位于381 nm,为Eu2+的5d→4f跃迁特征激发谱带.利用van Uitert公式计算了Eu2+取代Ba2B2P2O10中Ba2+时所占晶体学格位,得出507 nm和542 nm发射峰分别归属于八配位和六配位的Eu2+发射.研究发现,Eu2+浓度对Ba2B2P2O10∶Eu2+材料的发射强度有影响,并判断出Eu2+在Ba2B2P2O10中发射的自身浓度猝灭机理为电偶极-电偶极相互作用.  相似文献   

11.
采用高温固相法制备了LiBaPO4:Eu3+红色发光材料,研究了Eu3+掺杂浓度、电荷补偿剂等对材料发光性质的影响.结果显示,在401nm近紫外光激发下,材料呈多峰发射,分别由Eu3+的5Do→7FJ(J=0,1,2,3,4)能级跃迁产生,主峰位于619 nm;监测619 nm发射峰,所得激发光谱由O2- →Eu3+电...  相似文献   

12.
CaS∶Eu, Sm是一种典型的电子俘获型光存储材料,文章采用湿法在还原气氛中制备了CaS∶Eu, Sm粉末样品。测量了这种光存储材料的XRD、激发光谱、发射光谱、光激励发光光谱、热释光谱以及光激励发光衰减曲线。XRD结果表明样品在1 050 ℃晶格已经形成。光谱测试结果说明紫外光可激发该材料,作为信息写入光源。样品被紫外光源饱和激发后,用980 nm红外激光激励,发射出峰值位于635 nm的红光。光激励发光起初衰减较快,随后有一个较长的平缓期。且样品具有合适深度的陷阱能级,能够稳定存储信息。对CaS∶Eu, Sm的光存储机理进行了探讨。  相似文献   

13.
采用高温固相法合成了Sr3Al2O6∶Eu2+,Dy3+长余辉发光材料。用X射线衍射仪及荧光分光光度计对材料物相及光谱性能进行了分析。结果表明:所得样品为Sr3Al2O6的纯相,在360nm波长的激发下,得到波峰为537nm的宽带发射光谱;在468nm波长的激发下,得到波峰为590nm的宽带发射光谱;在波长为394nm的激发下,537和590nm的峰同时出现。根据晶格场效应和电子云膨胀效应,对不同激发波长对Sr3Al2O6∶Eu2+,Dy3+发射光谱的影响进行了解释。结果表明:在Sr3Al2O6∶Eu2+,Dy3+中发光中心因其5d能级劈裂幅度不同及4f65d1能带重心不同而导致发光颜色的不同。  相似文献   

14.
为研究红外上转换材料CaS∶Eu,Sm的光谱性能,搭建了实验平台,对其荧光谱、红外激励发光谱(上转换发光谱)、红外激励谱、荧光余辉衰减曲线、红外激励发光衰减曲线进行了测试.实验结果表明:CaS∶Eu,Sm可被450~550nm的光激发,荧光激发波峰位于470nm,红外响应波段为800~1 600nm,红外激励波峰为1 200nm.  相似文献   

15.
通过Li^+/La^3+同比例共掺杂策略,在氢气气氛下烧结制备了Li0.06La0.06Ba0.84Si2O5∶4%Eu^2+(LLBSO∶Eu2+)高效绿色发光荧光粉。相比于未掺杂样品Ba0.96Si2O5∶4%Eu2+(BSO∶Eu^2+),Li^+/La^3+共掺有助于单一相LLBSO∶Eu^2+荧光粉的合成,能有效降低烧结的温度和缩短合成时间。我们发现该策略节约荧光粉合成成本的同时,也可以显著提高其光学性能。相关测试表明,Li+/La3+共掺杂样品平均颗粒尺寸主要分布在1.1~2.7μm,颗粒团聚现象不明显,符合涂覆LED芯片要求。该样品可以有效地被365 nm近紫外LED芯片激发,产生位于502 nm的强的宽带绿光发射,其归属于Eu2+的5d-4f跃迁,发光强度是未掺杂样品的168%。此外,LLBSO∶Eu^2+荧光粉在150℃时发光强度仍保持在室温时的98%左右,具有良好的热稳定性。该样品CIE坐标位于绿光区(0.217,0.410)。通过绿粉/红粉和绿粉/红粉/蓝粉混粉策略,制得了色温为2918~4037 K的白色发光LED,其显色指数(Ra)均大于85,具有良好的热稳定性。实验结果表明,Li^+/La^3+共掺单一相的BSO∶Eu^2+绿色发光荧光粉是制备近紫外激发白光发射LED的优良候选荧光粉材料。  相似文献   

16.
刘影  俞淳善  顾光瑞  田莲花 《发光学报》2013,34(9):1113-1117
采用高温固相法制备了红色荧光粉Ca4LaNb(W1-x Mo x)4O20∶Eu3+并研究了样品的发光性质。Ca4LaNbW4O20∶Eu3+的激发光谱中包含一个宽的激发带,峰值位于275 nm,归属于WO2-4基团的电荷迁移跃迁。随着Mo6+离子的掺入,Ca4LaNbW4O20∶Eu3+位于275 nm处的吸收带变宽,其原因是O2--Eu3+的电荷迁移跃迁增强。在Ca4LaNb(W1-x Mo x)4O20∶Eu3+的发射光谱中,400~500 nm间较宽的发射带属于WO2-4基团的发射带,而位于591 nm和616 nm的尖锐的发射峰分别属于Eu3+的5D0→7F1磁偶极跃迁和5D0→7F2电偶极跃迁发射。随着Mo6+离子浓度的增加,WO2-4基团的发射带强度下降,从而提高了色纯度。  相似文献   

17.
采用溶胶-凝胶法在低温、还原气氛下制备了长余辉发光材料Sr4 Al14O25:Eu2+,Dy3+.用X射线粉末晶衍射对其进行了物相鉴定,表明在1200℃已经得到纯相的Sr4Al14O25产物.研究了铕和锶的比值、激发光波长对所制备的Sr4 Al14O25:Eu2+,Dy3+发光性能的影响并对其影响机理进行了探讨.样品的发光性能测试结果表明:采用溶胶-凝胶法制备长余辉发光材料Sr4Al14O25:Eu2+,Dy3+,其灼烧温度比高温固相法灼烧温度低;激发光谱向长波方向延伸时,在488 nm处发射峰增强,在410 nm处发射峰减弱;在一定范围内发光强度随着Eu2+量的增加而增强,Eu2+的最佳掺杂量为0.007,Eu2+的掺杂量超过0.007时会发生浓度猝灭.  相似文献   

18.
采用高温固相法制备了BaClxBr2-x∶Eu2+光激励发光材料,利用XRD、激发、发射以及激励光谱研究了所制备材料的结构和光学性能。XRD图像表明所制备的材料为单一纯相,随X值增大,衍射角向大角度偏移。发射光谱中位于405nm的窄带谱峰,由Eu2+的4f65d→4f7能级跃迁所引起,监测405nm发射峰,所得激发光谱是位于250~380nm之间的宽带,谱峰位于303nm;光激励波段位于480~800nm,激励峰位于575nm。通过光谱曲线拟合,发现激励光谱由550,610和685nm左右的光谱叠加而成,分别对应F(Cl-),F(Cl-Br),F(Br-)色心,激励峰随Cl/Br比值增加而蓝移。  相似文献   

19.
采用EDTA二钠盐参加的共沉淀方法制备出纳米GdPO4∶Eu3+,利用X射线衍射,荧光光谱和电镜等测试手段对GdPO4∶Eu3+的相结构和发光性质进行了研究。XRD图谱结果表明700℃合成了纯的具有单斜晶系、独居石结构的纳米GdPO4∶Eu3+。根据Scherrer公式计算,700,800℃热处理后样品的一次颗粒度分别为18,40 nm左右。激发光谱和发射光谱的研究表明,电荷迁移态和Eu3+的特征发射峰的强度随GdPO4∶Eu3+纳米粒子的增大而增强。在较小的纳米粒子中,存在结构扭曲的现象,315 nm激发下的发射光谱研究表明,Gd3+和Eu3+具有较好的能量传递。  相似文献   

20.
王灵利  倪海勇  张秋红 《发光学报》2013,34(10):1275-1278
采用高温固相法,在1 300~1 400℃的还原气氛条件下,合成了BaAl2-xSixO4-xNx∶Eu2+绿色荧光材料。该荧光材料是在BaAl2O4∶Eu荧光粉的基础上,通过(SiN)+替代(AlO)+来获得的。随着N元素的引入,BaAl2O4∶Eu荧光粉的激发和发射光谱均发生红移。此时,BaAl2-xSixO4-xNx∶Eu2+荧光材料可以被390~440nm范围内的近紫外-蓝光有效激发,发射出500~526 nm的绿光。因此,BaAl2-xSixO4-xNx∶Eu2+荧光粉是一种可用于白光LED的绿色荧光材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号