首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
为了使机械补偿的连续变焦光学系统可以连续、平稳地成像,提出了一种减小变焦系统凸轮曲线压力角的方法.改变变倍曲线方程,运用动态光学原理,拟合的补偿曲线的压力角有明显减小趋势.原始设计变倍曲线的压力角为31.4°,补偿曲线的最大压力角大于50°.运用插值法改变变倍组方程,得到的变倍曲线的最大压力角小于37°,补偿曲线的最大压力角小于23°,得到的新的凸轮曲线满足曲线压力角小于45°的要求.实际光学系统检测的结果证明了这种方法的可行性.该方法可以有效地减小凸轮曲线的压力角,实际变焦系统能够连续清晰地成像.  相似文献   

2.
王向阳  刘卫林 《应用光学》2017,38(2):277-280
变焦距光学系统在校正像差的同时还必须满足像面稳定的要求,补偿或消除由于光学系统中各组元的运动所造成的像相对接收器的偏移。利用动态光学稳像原理,推导变焦距光学系统的稳像方程,建立变焦距光学系统的数学模型,设计光学系统的凸轮曲线。给出了变焦距物镜的动态分析过程,利用光学设计软件CODE V最终得到了一个变倍倍率为8.15×,焦距范围为27 mm~220 mm的变焦距物镜,光学系统F#数为固定值4.2,视场为4.12°~33.56°。给出了凸轮曲线的计算方法及CODE V成像质量分析结果和MTF等。  相似文献   

3.
用OZSAD软件实现复合式变焦凸轮曲线优化设计   总被引:5,自引:4,他引:1       下载免费PDF全文
变焦距光学系统凸轮曲线设计是保证光学系统变焦精确、平滑和驱动力均衡的关键。以2运动组元变焦系统的牛顿法变焦推导公式为依据,分析等间隔设计和等角距设计凸轮曲线方法的特点,结合EBA20X10光学镜头设计实例,探讨了结合2者优点实现复合式凸轮曲线优化设计的方法。文中等间距是指变倍透镜组沿光轴的移动量与凸轮转角呈线性关系,凸轮曲线沿圆周展开为直线;等角距是指系统焦距与凸轮转角呈线性关系。最后介绍了可实现3种凸轮曲线辅助设计的软件工具OZSAD V1.2。设计结果表明,该设计方法可以降低凸轮曲线压力角,减少总展开角及加工点对数,还可保证凸轮的设计精度。  相似文献   

4.
变焦系统凸轮曲线的优化设计   总被引:4,自引:1,他引:3  
陈鑫  付跃刚 《应用光学》2008,29(1):45-47
由于变焦系统凸轮曲线的的质量直接影响像质,因此从实际应用出发,以变焦方程和动态光学原理为依据,结合实际工作中需要设计的变焦镜头,通过对变焦系统高斯计算的过程进行分析,指出影响凸轮曲线的主要因素为变倍组和补偿组的焦距以及二者的间隔。针对3个参量之间的对应关系进行讨论,提出了优化凸轮曲线的方法。  相似文献   

5.
以某三十倍连续变焦镜头为例,研究了改变曲线压力角的方法。以压力角为目标函数,将凸轮曲线转角构造为分段函数对转角重新划分,压力角过大位置分配较大转角,压缩压力角较小处的转角,从而降低曲线整体压力角,并可有效抑制曲线中较大拐点。利用Matlab进行仿真计算,对比多种转角分配取值的优化结果,得到相对优化的凸轮曲线。优化结果使得曲线最大压力角值由原始的76.9°降低为41.9°。经试验验证,利用该方法优化完的变焦镜头成像质量良好,光轴跳动不大于3个像素,光轴稳定性不大于1个像素。  相似文献   

6.
大倍率红外连续变焦系统双电机控制技术研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用双电机联动控制变倍组与补偿组的变焦方案替代传统的曲线套筒,实现了采用全透射式结构型式,相对口径为1/4,焦距变化范围为342.76 mm~13.15 mm连续变焦光学镜头的机械补偿式变焦。将变倍组设计成步进模式,作匀速运动,补偿组设计成位置跟踪模式,按凸轮曲线作变速运动,采用双电机全数字伺服控制凸轮(CAM)算法,将光学设计计算的变倍镜和补偿镜位置对应关系转变为对应的脉冲数输入到CAM表中,从而确定2个不同运动速度轴之间的位置对应关系。试验结果表明:双电机控制的变倍组和补偿组位置分辨率达到0.18 m,光轴一致性水平方向达到1.9,垂直方向达到1.3。  相似文献   

7.
高变倍比连续变焦体视显微镜物镜设计   总被引:2,自引:0,他引:2       下载免费PDF全文
为了实现体视显微镜物镜的大变倍比连续变焦,同时尽量避免使用非球面以及衍射元件,采用双组联动型变倍补偿形式,设计了大变倍比连续变焦距体视显微镜物镜系统。该系统实现0.8~16倍的20倍连续变焦,系统工作距离达到91 mm,后工作距离达到200 mm,双组联动型结构不仅实现了大变倍比,同时保证系统结构尽量简单。设计结果表明:双组联动型变倍补偿形式对实现大变倍比以及简化结构是有利的。通过对系统成像质量以及凸轮拟合曲线进行分析,系统组元移动曲线光滑,成像质量达到要求。  相似文献   

8.
ZFA等角距曲线的优化设计   总被引:1,自引:0,他引:1  
梁来顺 《光学技术》2005,31(2):241-242
变焦距系统镜组的轴向位移与倍率关系通常不是线性的,示值间距标记也是非均匀的。在光学检测和计量仪器的应用中,操作者很难准确地选择刻度标志之外的焦距值,尤其是在高倍段刻度密集的和非线性显著的地方更是如此。在有电机驱动的系统中,电机匀速转动带来的是倍率的非线性变化,很难在短时间内稳定到预定倍率的目标值。对含有像差因子的变焦函数进行变换后所编制的计算程序可以十分快捷地得到预定的设计结果。一个实际的光学系统往往偏离理想情况,为了达到最佳结果,可把像差因子补充到变焦距函数中,可借助变焦函数方程进行等角距变倍曲线的研究和设计,研究成果已应用到了产品的设计中,并取得了很好的效果。  相似文献   

9.
本文设计了一种焦距为6.5~52mm的可见光变焦距光学系统,视场角为6.6°~52°.设计中选取5个焦距位置进行了计算,采用负组变倍和正组补偿方式,实现连续变焦.设计结果表明其成像质量良好,其中75lp/mm处的调制传递函数值均大于0.6,弥散圆直径小于像元尺寸.最后采用插值拟合的方法进行了凸轮曲线的设计,该系统具有长度短,成像质量好,凸轮曲线平滑易于加工,工艺性好等优点.  相似文献   

10.
为了模拟红外目标由远及近的飞行过程,结合高变倍比红外连续变焦系统与大口径投影系统设计了一款红外目标模拟系统.连续变焦系统变倍比为20倍,工作波段为8~12μm,大口径投影系统口径为300mm,工作温度为-30~40℃.基于对系统参数的计算与分析,通过推导的消热差及消色差方程对材料进行合理选择及光焦度分配,实现了光学被动消热差设计,应用动态光学理论对变焦凸轮运动曲线进行了计算与绘制.系统成像质量分析结果表明,变焦过程中像面稳定,成像质量良好.该系统可以实现高倍率红外目标飞行距离的连续变化模拟,具有变倍比高,体积小,像质好,环境适应能力强等特点.  相似文献   

11.
介绍了飞行模拟器的原理及方案。讨论了飞行模拟器中目标显示变焦距成像系统的光学设计方案。探讨了垂轴放大率时的变焦距系统的特性 ,在垂轴放大率时变倍组和补偿组的共轭距均处于极值 ,在此处补偿组进行平滑换根 ,使补偿组位移曲线的上半段与下半段平滑相连 ,可以让补偿组也为整个系统变倍作出贡献 ,使得凸轮导程缩短 ,达到减小系统外形尺寸的目的。利用阻尼最小二乘法拟合出整个变焦过程中系统最佳像面的位置曲线 ,并按此设计凸轮曲线 ,即可保证系统在整个变焦过程中成像质量均处于最佳状态。成功地将上述思路应用于飞行模拟器变焦距成像系统中 ,取得了很好的效果  相似文献   

12.
陈志斌  宋岩  张超 《应用光学》2014,35(2):316-320
为减小机械补偿式连续变焦热像仪在变焦过程中的光轴漂移,根据连续变焦原理,对系统初始参数进行反复优化,保证补偿组移动曲线的平滑度,并将变倍组与补偿组的凸轮曲线设计为非线性变化曲线,既保证了焦距变化的均匀性,又减小了因凸轮转动引起的光轴漂移。利用多项式及三角函数拟合出了不同视场角下的光轴漂移曲线,并利用动态软件补偿技术来弥补光轴漂移的系统误差。结果表明,处理后的光轴漂移量可以控制在一个CCD像元尺寸左右,且具有较强的鲁棒性,对同类变焦镜头的设计及使用具有一定的参考价值。  相似文献   

13.
连续变焦镜头焦距输出结构的设计   总被引:2,自引:0,他引:2  
贾庆莲  王春霞 《中国光学》2010,3(6):649-652
根据光学设计中变倍组与补偿组的移动量与系统焦距的关系,设计了一种在变焦距镜头连续变焦时能准确输出焦距值的结构。该结构由蜗轮蜗杆驱动,以直线位移传感器为反馈元件,采用一个连接杆将直线位移传感器与变焦镜组进行固定连接来保证镜组的移动量直接反馈为位移传感器的电压值。与传统的通过齿轮传动将焦距变化反馈到旋转电位器的结构相比,该结构消除了由齿轮传动的空回、凸轮带动钉的间隙以及电位器的误差值等带来的影响。精度分析表明,采用这种高精度的直线位移传感器,加在其上的电压的变化可直接换算成焦距的变化,因此提高了焦距输出的精度。  相似文献   

14.
在机器视觉系统中,镜头的主要作用是将目标成像在图像传感器的光敏面上。针对生产过程中机器视觉系统在保持工作距离不变的情况下需获得不同的放大倍数,采用机械补偿形式,利用Zemax软件设计了一款可用于机器视觉的可见光多焦点变焦物镜系统。该系统工作距离可以在290 mm~340 mm范围内变化,实现了焦距从10 mm~100 mm的10倍多焦点变焦。设计结果表明:该变焦物镜最大畸变小于1%,最大兼容0.84 cm(1/3英寸)CCD图像传感器。用调制传递函数对系统的成像性能进行评估,该系统在空间频率100 lp/mm处调制传递函数大于0.3,满足成像要求。  相似文献   

15.
应用动态光学理论求解变焦光学系统补偿组凸轮曲线   总被引:14,自引:1,他引:13  
变焦镜头在校正像差的同时,还要求像面稳定,才能保证成像质量。采用机械补偿的方法,可以保证凸轮的准确性以使像面稳定,从而保证成像质量。首先应用动态光学理论推导出变焦光学系统的像移补偿组公式,从而得到像移补偿组的轨迹曲线。再根据推导得出的补偿曲线加工出凸轮机构,可对光学系统变焦带来的像移实现完全补偿。此外还给出三个变焦系统的设计实例,用来验证该方法的正确性和实用性。  相似文献   

16.
短焦段数字电影变焦放映镜头的设计   总被引:1,自引:1,他引:0  
李维善  陈琛  张禹  刘宵婵 《光子学报》2012,41(10):1186-1192
为了填补国内短焦段数字电影变焦放映镜头的空白及满足国内数字电影市场对大投射比镜头的需求,本文采用机械补偿式变焦原理,利用ZEMAX光学设计软件自主研发设计出一款适用于0.65英寸、单数字光处理器、1.3K数字电影放映机的短焦段连续变焦数字电影放映镜头.镜头包括前固定组、变倍组、补偿组和后固定组,由8组10片玻璃球面透镜组成,其中变倍组由一片负透镜构成,补偿组由两组双胶合透镜组构成.镜头总长170mm,全口径70mm,变焦范围为14.5~18.2mm,相对孔径为1/2,投射比范围为0.99∶1~1.23∶1,后工作距离为32.6mm.镜头凸轮曲线的设计采用等间隔变焦的方法,设计出了平滑稳定、斜率适宜、压力角小的凸轮曲线,具有加工方便、加工准确度高、变倍组升角容易控制且焦距变化均匀的优点.整个镜头结构简单、体形小、重量轻、成本低.  相似文献   

17.
高变倍比数码变焦镜头设计   总被引:6,自引:3,他引:3  
高明  段晶 《应用光学》2009,30(1):1-5
为提高变焦距系统的工作性能,使其在大视场时仍具有良好的像质,且系统结构简单,易于机械设计、加工及装调,在设计中引入了传统球面光学设计与非球面相结合的设计思想。选择4个焦距位置进行设计计算,用光学设计软件ZEMAX上机调试,设计了焦距为6.9mm~91.6mm,视场5°~60°的变焦系统,整个系统由4组12片透镜组成,其中包括3个非球面,系统具有变倍比高、视场大等特点。设计结果表明:在设计中采用非球面可使系统结构紧凑,系统成像质量得到提高。  相似文献   

18.
The zoom objective lens is an important part of the polarization imaging system. At present, the zoom objective lens on the market is relatively expensive due to the use of more aspheric surfaces. In order to reduce the processing cost of the polarization imaging system zoom objective lens, a 20 mm~200 mm zoom objective lens for polarization imaging system was designed. By using positive group compensation method and Zemax to optimize the zoom system, the final system used only 7 spherical lenses to achieve good image quality. The modulation transfer function (MTF) is greater than 0.3 at 120 lp/mm, the distortion is less than 4%, and the cam curve of the system is smooth without breakpoints. The system tolerance analysis results show that the tolerance range is set as follows: the aperture tolerance of the lens surface is 2, the thickness tolerance of the lens or air center is ±0.02 mm, the inclination tolerance of the lens surface center is ±0.025°, the lens assembly and adjustment tolerance is ± 0.025 mm, and the lens refractive index deviation is 0.002. The tolerance setting conforms to the component processing and system assembly and adjustment process, which has a certain reference value to reduce the cost of polarization imaging system. © 2022 Editorial office of Journal of Applied Optics. All rights reserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号