首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Wearthering steels treated with and without zinc phosphate solution were exposed to atmosphere for 15 years and rust layers produced on the steels were analysed by scattering Mössbauer spectrometry (CEMS and XMS). γ-FeOOH, fine α-FeOOH, 5Fe2O3·9H2O, γ-Fe2O3 and Fe3O4 were identified to be present in the rust formed on the steel without phosphate coating. Large particles of γ-Fe2O3 and Fe3O4 formed on the uncoated steel exposed to atmosphere in a position facing north on vertical plane. The layer structure of rust was affected by the position. The thin rust layer formed on the phosphate + carylite resin coated steel was considered to consist of γ-FeOOH, fine α-FeOOH, and fine γ-Fe2O3.  相似文献   

2.
By using a KNO3-aging ferrous hydroxide gel method, Fe3O4 particles with sizes ranging from 35 to 1500 nm were synthesized. The particles were covered with a silica coating to form Fe3O4-SiO2 core-shell structures by using the improved conventional Stöber polycondensation method. The thickness of the SiO2 covering on magnetite particles surface varies from 10 to 20 nm. The morphology, size and composition of the particles were determined by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The particles with and without coating with SiO2 were pressed into slices with an oil press at 10 MPa. Subsequently, the coercive forces HC of the particles were measured by VSM at room temperature, and the critical size for a single domain was estimated. The shape of the particles is basically spherical when the size is smaller than 800 nm, while it is hexagonal for larger particles. The HC of Fe3O4-SiO2 core-shell structure was larger than that of the uncoated Fe3O4 particles by 20%, which was explained to be due to the reduction of inter-particle magnetostatic interaction, supported by an agreement with the packing factor. The dependence of HC on magnetic particle size could be explained and fitted by the Heewell-Knozam stacking density equation and object-oriented micromagnetic computing framework (OOMMF) micromagnetic software. the results agree well with the experimental data.  相似文献   

3.
Fe3O4-based heterostructures, including Fe3O4/MgO/Fe3O4, Fe3O4/MgO/Si and Fe3O4/SiO2/Si, were fabricated by magnetron sputtering to investigate the perpendicular-to-plane magneto-transport properties. In the Fe3O4/MgO/Fe3O4 and Fe3O4/MgO/Si heterostructures, the typical magneto-transport properties of single Fe3O4 films, such as negative magnetoresistance (MR) and extreme values of MR−T curves at 120 K, were observed, suggesting that the spin polarization of conducting electrons conserves through MgO barrier. MR in the Fe3O4/MgO/Fe3O4 heterostructure is larger than that in the Fe3O4/MgO/Si heterostructure, because the spin of electrons is disturbed in the depletion layer of Si and the SiO2 layer introduced by Fe3O4/MgO growth. The Fe3O4/SiO2/Si heterostructure has a positive MR of 2% at 120 K, which may originate from the scattering of conducting electrons in amorphous SiO2 and the spin polarization reversal at the Fe3O4/SiO2 interface.  相似文献   

4.

The method of obtaining nanoclusters α-Fe2O3 in the pores of monodisperse spherical particles of mesoporous silica (mSiO2) by a single impregnation of the pores with a melt of crystalline hydrate of ferric nitrate and its subsequent thermal destruction has been proposed. Fe3O4 nanoclusters are synthesized from α-Fe2O3 in the pores by reducing in thermodynamically equilibrium conditions. Then particles containing Fe3O4 were annealed in oxygen for the conversion of Fe3O4 back to α-Fe2O3. In the result, the particles with the structure of the core-shell mSiO2/Fe3O4@mSiO2/α-Fe2O3 are obtained. The composition and structure of synthesized materials as well as the field dependence of the magnetic moment on the magnetic field strength have been investigated.

  相似文献   

5.
The corrosion products on steels exposed at two sites in Campeche, México and one site at Kure Beach, USA, have been investigated to determine the extent to which different marine conditions and exposure times control the oxide formation. The corroded coupons were analyzed by Mössbauer, Raman and infrared spectroscopy as well as X‐ray diffraction, in order to completely identify the oxides and map their location in the corrosion coating. The coating compositions were determined by Mössbauer spectroscopy using a new parameter, the relative recoilless fraction (F-value) which gives the atomic fraction of iron in each oxide phase from the Mössbauer sub‐spectral areas. For short exposure times, less than three months, an amorphous oxyhydroxide was detected after which a predominance of lepidocrocite (γ-FeOOH), and akaganeite (β-FeOOH) were observed in the corrosion coatings with the fraction of the later phase increasing at sites with higher atmospheric chloride concentrations. The analysis also showed that small clusters of magnetite (Fe3O4), and maghemite (γ(Fe2O3), were seen in the micro-Raman spectra but were not always identified by Mössbauer spectroscopy. For longer exposure times, goethite (α-FeOOH), was also identified but little or no β-FeOOH was observed. It was determined by the Raman analysis that the corrosion products generally consisted of inner and outer layers. The protective layer, which acted as a barrier to slow further corrosion, consisted of the α-FeOOH and nano-sized γ-Fe2O3 phases and corresponded to the inner layer close to the steel substrate. The outer layer was formed from high γ-FeOOH and low α-FeOOH concentrations.  相似文献   

6.
The Verwey transition in Fe3O4 nanoparticles with a mean diameter of 6.3 nm is suppressed after capping the particles with a 3.5 nm thick shell of SiO2. By X‐ray absorption spectroscopy and its associated X‐ray magnetic circular dichroism this suppression can be correlated to localized Fe2+ states and a reduced double exchange visible in different site‐specific magnetization behavior in high magnetic fields. The results are discussed in terms of charge trapping at defects in the Fe3O4/ SiO2 interface and the consequent difficulties in the formation of the common phases of Fe3O4. By comparison to X‐ray absorption spectra of bare Fe3O4 nanoparticles in course of the Verwey transition, particular changes in the spectral shape could be correlated to changes in the number of unoccupied d states for Fe ions at different lattice sites. These findings are supported by density functional theory calculations.  相似文献   

7.
The surface structure of the iron oxide nanoparticles obtained by the co-precipitation method has been investigated, and a thin layer of α-FeOOH absorbed on surface of the nanoparticle is confirmed by analyses of Fourier transform infrared (FTIR), X-ray photoelectron spectra (XPS) and surface photovoltage spectroscopy (SPS). After annealed at 400 °C, the α-FeOOH can be converted to γ-Fe2O3. The simple-annealed procedure resulted in the formation of Fe3O4@γ-Fe2O3 core/shell structure with improved stability and a higher magnetic saturation value, and also the simple method can be used to obtain core/shell structure in other similar system.  相似文献   

8.
Samples of the iron oxides Fe0.94O, Fe3O4, Fe2O3, and Fe2SiO4 were prepared by high temperature equilibration in controlled gas atmospheres. The samples were fractured in vacuum and high resolution XPS spectra of the fractured surfaces were measured. The peak positions and peak shape parameters of Fe 3p for Fe2+ and Fe3+ were derived from the Fe 3p XPS spectra of the standard samples of 2FeO·SiO2 and Fe2O3, respectively. Using these parameters, the Fe 3p peaks of Fe3O4 and Fe1−yO are analysed. The results indicate that high resolution XPS techniques can be used to determine the Fe2+/Fe3+ ratios in metal oxides. The technique has the potential for application to other transition metal oxide systems.  相似文献   

9.
Magnetic measurements have been performed on 40-nm sphere-like Fe3 − δO4 (δ=0.043) nanoparticles using a Quantum Design vibrating sample magnetometer. Coating Fe3 − δO4 nanoparticles with SiO2 effectively eliminates magnetic interparticle interactions so that the coercive field HC in the high-temperature range between 300 K and the Curie temperature (855 K) can be well fitted by an expression for noninteracting randomly oriented single-domain particles. From the fitting parameters, the effective anisotropy constant K is found to be (1.38±0.11)×105 erg/cm3, which is very close to the bulk magnetocrystalline anisotropy constant of 1.35×105 erg/cm3. Moreover, the inferred mean particle diameter from the fitting parameters is in quantitative agreement with that determined from transmission electron microscope. Such a quantitative agreement between data and theory suggests that the ensemble of our SiO2-coated sphere-like Fe3 − δO4 nanoparticles represents a good system of noninteracting randomly-oriented single-domain particles.  相似文献   

10.
A novel method is described for the preparation of superparamagnetic mesoporous maghemite (γ-Fe2O3)/silica (SiO2) composite microspheres to allow rapid magnetic separation of DNA from biological samples. With magnetite (Fe3O4) and silica nanoparticles as starting materials, such microspheres were synthesized by the following two consecutive steps: (1) formation of monodispersed organic/inorganic hybrid microspheres through urea-formaldedyde (UF) polymerization and (2) removal of the organic template and phase transformation of Fe3O4 to γ-Fe2O3 by calcination at elevated temperatures. The as-synthesized particles obtained by heating at temperature 300 °C feature spherical shape and uniform particle size (dparticle=1.72 μm), high saturation magnetization (Ms=17.22 emu/g), superparamagnetism (Mr/Ms=0.023), high surface area (SBET=240 m2/g), and mesoporosity (dpore=6.62 nm). The composite microsphere consists of interlocked amorphous SiO2 nanoparticles, in which cubic γ-Fe2O3 nanocrystals are homogeneously dispersed and thermally stable against γ- to α-phase transformation at temperatures up to 600 °C. With the exposed iron oxide nanoparticles coated with a thin layer of silica shell, the magnetic microspheres were used as a solid-phase adsorbent for rapid extraction of genomic DNA from plant samples. The results show that the DNA templates isolated from pea and green pepper displayed single bands with molecular weights greater than 8 kb and A260/A280 values of 1.60-1.72. The PCR amplification of a fragment encoding the endogenous chloroplast ndhB gene confirmed that the DNA templates obtained were inhibitor-free and amenable to sensitive amplification-based DNA technologies.  相似文献   

11.
A relationship between methylene blue (MB) decomposition ability under visible light and local structure of xFe2O3·(100-x)SiO2 glass abbreviated as xFS prepared by sol-gel method was investigated by 57Fe-Mössbauer spectroscopy, X-ray diffractometry (XRD) and ultraviolet-visible light absorption spectroscopy (UV-Vis). Mössbauer spectra of xFS glass with x of 10, 30 and 50 annealed at 1000 °C for 3 h were mainly composed of a paramagnetic doublet due to fayalite (Fe2SiO4), and magnetic sextets due to magnetite (Fe3O4) or hematite (α-Fe2O3). The absorption area (A) of α-Fe2O3 gradually increased from 0.0 to 10.3 and 100 % with the increasing Fe2O3 content (x) of annealed xFS glass. A leaching test performed by 20 mL of MB aqueous solution and 40 mg of annealed 50FS glass showed that MB concentration decreased from 16.2 to 4.7 μmol L?1 after 2 h with the first order rate constant of 1.8 × 10?4 s?1. These results prove that annealed iron silicate glass containing α-Fe2O3 can decompose MB effectively under visible light irradiation.  相似文献   

12.
Core–shell Cu/γ‐Fe2O3@C and yolk–shell‐structured Cu/Fe@γ‐Fe2O3@C particles are prepared by a facile synthesis method using copper oxide as template particles, resorcinol‐formaldehyde as the carbon precursor, and iron nitrate solution as the iron source via pyrolysis. With increasing carbonization temperature and time, solid γ‐Fe2O3 cores are formed and then transformed into Fe@γ‐Fe2O3 yolk–shell‐structured particles via Ostwald ripening under nitrogen gas flow. The composition variations are studied, and the formation mechanism is proposed for the generation of the hollow and yolk–shell‐structured metal and metal oxides. Moreover, highly graphitic carbons can be obtained by etching the metal and metal oxide nanoparticles through an acid treatment. The electrocatalytic activity for oxygen reduction reaction is investigated on Cu/γ‐Fe2O3@C, Cu/Fe@γ‐Fe2O3@C, and graphitic carbons, indicating comparable or even superior performance to other Fe‐based nanocatalysts.  相似文献   

13.
Stable silicon oil based ferrofluid was prepared in the present investigation. Silicon oil surfactant ethoxy terminated polydimethylsiloxane was used to modify the Fe3O4 nanoparticles. The Fe3O4 nanoparticles were firstly coated with a SiO2 layer by the hydrolysis of tetraethoxysilane. Then using the active hydroxyl groups on the surface of the SiO2, silicon oil surfactant was covalently grafted onto the Fe3O4 nanoparticles surface. The ethoxy terminated polydimethylsiloxane has similar molecular chain structure and good compatibility with that of the carrier liquid, thus ensuring stable dispersion of modified Fe3O4 in the carrier silicon oil. The interaction between Fe3O4 and the modifier was characterized by IR and XPS. The crystal structure and the magnetic properties of the Fe3O4 nanoparticles were determined by XRD and VSM, respectively. The size and morphology of the particles were observed using TEM. The properties of the silicon oil based ferrofluid were characterized by Gouy magnetic balance. The results indicated that the ferrofluid had high magnetism and good stability. The rheological properties and thermostability of the ferrofluid were also investigated.  相似文献   

14.
Nano-magnetic Fe3O4 particles coated with silica are synthesized. The study of structural and magnetic properties was carried out using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometer (VSM) techniques. The VSM results show that these kinds of composite particles exhibit superparamagnetic behavior with zero coercivity and remanence. The magnetic spheroid alumina carriers containing these magnetic composite particles were prepared by an internal gelation process. The SiO2 coatings prevent the reaction between Fe3O4 and Al2O3 during the sintering process and maintain the superparamagnetic behavior of the catalyst carriers.  相似文献   

15.
For fundamental studies of the atmospheric corrosion of steel, it is useful to identify the iron oxide phases present in rust layers. The nine iron oxide phases, iron hydroxide (Fe(OH)2), iron trihydroxide (Fe(OH)3), goethite (α-FeOOH), akaganeite (β-FeOOH), lepidocrocite (γ-FeOOH), feroxyhite (δ-FeOOH), hematite (α-Fe2O3), maghemite (γ-Fe2O3) and magnetite (Fe3O4) are among those which have been reported to be present in the corrosion coatings on steel. Each iron oxide phase is uniquely characterized by different hyperfine parameters from M?ssbauer analysis, at temperatures of 300K, 77K and 4K. Many of these oxide phases can also be identified by use of Raman spectroscopy. The relative fraction of each iron oxide can be accurately determined from the M?ssbauer subspectral area and recoil-free fraction of each phase. The different M?ssbauer geometries also provide some depth dependent phase identification for corrosion layers present on the steel substrate. Micro-Raman spectroscopy can be used to uniquely identify each iron oxide phase to a high spatial resolution of about 1 μm. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
The effect of anions such as Cl, SO42−, and HPO42− on the phase stability of FeOOH (α or γ) during precipitation is investigated. Oxidation of Fe(OH)2·xH2O from FeCl2 solution with high Cl concentration ([Cl]/[Fe]=RCl≥8) or (NH4)2Fe(SO4)2 (FAS) with [HPO42−]/[Fe]=RP≥0.02 yields phase-pure γ-FeOOH. In the medium ranges of RCl and RP, mixed phases of α-FeOOH and γ-FeOOH are obtained. Replacement of OH by Cl with the bridging cations or strongly bonded HPO42− ions in the matrix of the intermediate phase (Fex2+Fey3+(OH)2x+2ynz·xH2O(A)zn, where A is anions such as Cl, SO42−, HPO42−, etc.), promoted the lower density γ-FeOOH. However, the particles are less developed and have poor crystallinity as evidenced from transmission electron microscope and thermogravimetry-differential thermal analysis of the precipitates. Whereas, monophasic, uniformly sized, nano-lath shaped particles with high aspect ratio >10 are obtained when morphology-controlling cation additives such as Pt4+, Pd2+ or Rh3+ are present in FeCl2 (RCl≥8) solution. Preferential adsorption of additives on (0k0) and (h00) planes limits the growth in the perpendicular directions leading to high aspect ratios. The effect of these additives are suppressed by the phosphate ion, a strong complexing ligand, giving rise to fibrous aggregate with the length of individual particles as small as 10-30 nm. While most of the Cl ion is removed from the final precipitates on washing, phosphate remained as HPO42− as evidenced from IR absorption spectra. Maghemite obtained by dehydroxylating γ-FeOOH contains randomly distributed micropores bringing in the relaxation effects of spins on the surface atoms as deciphered from Mössbauer spectroscopy. This leads to the low σs (44-48 emu/g) and Hc (120-130 Oe) for γ-Fe2O3−δ particles. Whereas nearly pore-free single crystalline particles obtained by reduction followed by reoxidation has high value of σs (73 emu/g) and Hc (320 Oe), which decreases to 30 emu/g and 75 Oe, respectively, for nanoparticles obtained from phosphate stabilized lepidocrocite. The mobility of iron ions and counter mobility of vacancies during the topotactic transformation of γ-FeOOH to magnetite to γ-Fe2O3−δ renders the particles pore-free.  相似文献   

17.
The corrosion of a carbon steel was studied in different atmospheres at sites in the Republic of Panama. The weight loss (corrosion penetration) suffered by the carbon steel is related to time by a bilogarithmic law. Mössbauer spectroscopy indicated the rust was composed of non-stoichiometric magnetite (Fe3-xO4), maghemite (γ-Fe2O3), goethite (α-FeOOH) of intermediate particle size, lepidocrocite (γ-FeOOH) and superparamagnetic particles. Magnetite formation is related to the alternating dry--wet cycles. Goethite is related to corrosion penetration by a saturation type of behavior, following a Langmuir type of relationship. Goethite in rust protects steel against further atmospheric corrosion.  相似文献   

18.
A complex study of the hydrogen reduction of nanosized iron hydroxide Fe(OH)3 at 400°C was performed. It was shown that, during the reduction of Fe(OH)3 to iron metal α-Fe, intermediate compounds such as Fe(OH)2, α-FeOOH, β-FeOOH, γ-FeOOH, δ-FeOOH, and FeO are formed along with stable iron oxides α-Fe2O3, γ-Fe2O3, and Fe3O4. A scheme of chemical and structural transformations that occur in the reduction of nanosized Fe(OH)3 is presented. The scheme takes into account the possibility of the bifurcation mechanism of reaction development.  相似文献   

19.
Magnetite polycrystalline films are grown by variously oxidizing a Fe film on the Si(111) surface covered by a thin (1.5 nm) SiO2 layer. It is found that defects in the SiO2 layer influence silicidation under heating of the Fe film. The high-temperature oxidation of the Fe film results in the formation of both Fe3O4 and iron monosilicide. However, the high-temperature deposition of Fe in an oxygen atmosphere leads to the growth of a compositionally uniform Fe3O4 film on the SiO2 surface. It is found that such a synthesis method causes [311] texture to arise in the magnetite film, with the texture axis normal to the surface. The influence of the synthesis method on the magnetic properties of grown Fe3O4 films is studied. A high coercive force of Fe3O3 films grown by Fe film oxidation is related to their specific morphology and compositional nonuniformity.  相似文献   

20.
β-FeOOH nanoparticles have been prepared in a microemulsion system with nonionic surfactant polyoxyethylene(4)nonylphenylether CH3(CH2)8C6H4O(CH2OCH2)4H. The powder X-ray diffraction, infrared spectra, and transmission electron microscopic images indicate that the products are 20–30 nm length nanorods with a crystal structure belonging to monoclinic β-FeOOH and lattice parameters of a=0.9981, b=0.2948, c=1.0485 nm and β=92.26°. The size and shapes of β-FeOOH nanoparticles can be manipulated by the surfactant. The modified β-FeOOH nanoparticles are paramagnetic at room temperature and may be antiferromagnetic or weakly ferrimagnetic at lower temperatures. The 57Fe Mössbauer spectra show that the magnetic structure transforms below 150 K and two kinds of Fe–O octahedra exist in the lattice of the modified β-FeOOH nanoparticles. The numbers of each kind of Fe–O octahedra are not the same at room temperature or at low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号