首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 482 毫秒
1.
High-resolution Fourier transform infrared spectra of natural trans-ClHCCHF and of its isotopologue trans-ClHCCDF have been recorded in the region between 700 and 1150 cm−1 with the purpose to analyze the ν11 fundamental of the main species and the ν10 of its deuterated compound. Both bands, of symmetry species A″, present c-type envelope absorptions. Beside the expected features, the K structure of the P(J), Q(J), and R(J) manifolds was resolved and identified; the assignment of the rovibrational transitions was extended up to J = 92 and Ka = 13 for the trans-35ClHCCHF and up to J = 86 and Ka = 10 for trans-35ClHCCDF. More than 2900 and 2700 lines for the main and deuterated species, respectively, were analyzed by a least-squares procedure and reliable spectroscopic molecular parameters were determined for both isotopologues.  相似文献   

2.
丁皓  申承民  惠超  徐梽川  李晨  田园  时雪钊  高鸿钧 《中国物理 B》2010,19(6):66102-066102
Monodisperse Au-Fe 3 O 4 heterodimeric nanoparticles (NPs) were prepared by injecting precursors into a hot reaction solution.The size of Au and Fe 3 O 4 particles can be controlled by changing the injection temperature.UV-Vis spectra show that the surface plasma resonance band of Au-Fe 3 O 4 heterodimeric NPs was evidently red-shifted compared with the resonance band of Au NPs of similar size.The as-prepared heterodimeric Au-Fe 3 O 4 NPs exhibited superparamagnetic properties at room temperature.The Ag-Fe 3 O 4 heterodimeric NPs were also prepared by this synthetic method simply using AgNO 3 as precursor instead of HAuCl 4.It is indicated that the reported method can be readily extended to the synthesis of other noble metal conjugated heterodimeric NPs.  相似文献   

3.
4.
Based on density functional theory+Udensity functional theory+U calculations and the quasi-annealing simulation method, we obtain the ground electronic state for α-Pu2O3 and present its phonon dispersion curves as well as various thermodynamic properties, which have seldom been theoretically studied because of the huge unit cell. We find that the Pu–O chemical bonding is weaker in α-Pu2O3 than in fluorite PuO2, and subsequently a frequency gap appears between oxygen and plutonium vibration density of states. Based on the calculated Helmholtz free energies at different temperatures, we further study the reaction energies for Pu oxidation, PuO2 reduction, and transformation between PuO2 and α-Pu2O3. Our reaction energy results are in agreements with available experiment. And it is revealed that high temperature and insufficient oxygen environment are in favor of the formation of α-Pu2O3.  相似文献   

5.
The Fourier transform infrared (FTIR) spectrum of the ν3 band of C2H3D was measured at an unapodized resolution of 0.0063 cm−1 in the 1240-1340 cm−1 region. Rovibrational constants for the upper state (ν3 = 1) up to five quartic and two sextic centrifugal distortion terms had been obtained by assigning and fitting a total of 1037 infrared transitions using a Watson’s A-reduced Hamiltonian in the Ir representation. The root-mean-square deviation of the fit was 0.00051 cm−1. The ground state rovibrational constants were also determined by a fit of 674 combination differences together with 21 microwave frequencies from the present infrared measurements with a root-mean-square deviation of 0.00040 cm−1. The upper state (ν3 = 1) and ground state rovibrational constants of C2H3D represent the most accurate values obtained so far. The A-type ν3 band, centred at 1288.788826 ± 0.000044 cm−1 was found to be relatively free from local frequency perturbations. From the ν3 = 1 rovibrational constants obtained, the inertial defect Δ3 was 0.1619724 ± 0.0000001 μÅ2.  相似文献   

6.
We present the results of XRD, magnetization, resistivity and specific heat measurements of CeIr2Si2 single crystals for both, the low-temperature α-phase and the high-temperature β-phase, respectively. The α-phase adopts the tetragonal ThCr2Si2-type whereas the β-phase forms in the CaBe2Ge2-type structure. Both the phases remain paramagnetic down to low temperatures, nevertheless both, the magnetization and resistivity exhibit pronounced anisotropy in the whole temperature range of measurements (2-300 K). Results of fitting the temperature dependence of the susceptibility within the interconfiguration-fluctuation model point to the Ce valence fluctuating between 3+ and 4+. The α-phase behaves as a Fermi-liquid (FL) at low temperatures whereas the β-phase exhibits non-Fermi-liquid (NFL) features. The results are discussed in context of other similar polymorphic compounds.  相似文献   

7.
The 71 and 91 vibrational states of deuterated species of formic acid molecule DCOOH have been recorded by a FTIR spectrometer in the region 450- at a resolution of and a millimeter wave spectrometer. In the analysis microwave transitions from literature were used in addition to 14 835 assigned IR and 114 millimeter wave lines in the 71 and 91 vibrational states. The analysis resulted in band origins, rotational, centrifugal distortion, and eight interaction parameters of the Coriolis coupled 71 and 91 vibrational states. RMS deviation of the fit was for the IR data and the maximum values of J and Ka quantum numbers in the fit were 64, 28 and 64, 30 for 71 and 91 states, respectively.  相似文献   

8.
张小妞  施德恒  孙金锋  朱遵略 《中国物理 B》2011,20(4):43105-043105
The potential energy curves (PECs) of X1Σ+g and A1Πu electronic states of the C2 radical have been studied using the full valence complete active space self-consistent field (CASSCF) method followed by the highly accurate valence internally contracted multireference configuration interaction (MRCI) approach in conjunction with the aug-cc-pV6Z basis set for internuclear separations from 0.08 nm to 1.66 nm. With these PECs of the C2 radical,the spectroscopic parameters of three isotopologues ( 12C2 ,12C13C and 13C2 ) have been determined. Compared in detail with previous studies reported in the literature,excellent agreement has been found. The complete vibrational levels G(υ),inertial rotation constants B υ and centrifugal distortion constants D υ for the 12C2 ,12C13C and 13C2 isotopologues have been calculated for the first time for the X1Σ+g and A1Πu electronic states when the rotational quantum number J equals zero. The results are in excellent agreement with previous experimental data in the literature,which shows that the presented molecular constants in this paper are reliable and accurate.  相似文献   

9.
Using absorption FT spectra (Bruker IFS 120, unapodized FWHM resolution ≈0.001 cm−1), about 1400 lines, between 880 and 1050 cm−1, and belonging to the ν6 band of both 12CH379Br and 12CH381Br isotopologues have been studied. Self- and N2-broadening coefficients are measured at various temperatures with an accuracy estimated to be around 10%. Their temperature-dependence exponents nself and nN2 have been derived with an accuracy estimated to be between 10% and 20%. A rotational dependence with the quantum number J has been observed for both nself and nN2, and has been empirically modeled using average values and polynomial expansions.  相似文献   

10.
A novel method was applied to prepare β-Ga2O3 nanorods. In this method, β-Ga2O3 nanorods have been successfully synthesized on Si(1 1 1) substrates through annealing sputtered Ga2O3/Mo films under flowing ammonia at 950 °C in a quartz tube. The as-synthesized nanorods are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectroscopy (FTIR). The results show that the nanorod is single-crystalline Ga2O3 with monoclinic structure. The β-Ga2O3 nanorods are straight and smooth with diameters in the range of 200-300 nm and lengths typically up to several micrometers. The growth process of the β-Ga2O3 nanorods is probably dominated by conventional vapor-solid (VS) mechanism.  相似文献   

11.
Spectra of CF4 in the ν4 fundamental band region have been recorded in pure gas and in mixtures with He, Ar and N2 at resolution up to . Obtained data allowed us to evaluate the integrated band intensity, line intensity distribution and effective broadening coefficients for J-multiplets. The broadening coefficient behavior is similar to that previously registered for linear molecules: they coincide for P and R branches; the J-dependence in the case of argon is more pronounced than that for helium. The broadening coefficients for nitrogen and helium are practically the same but the values for nitrogen are scattered around the general trend.Q-branch broadening is different from that for J-manifolds. The coefficients of branch broadening are noticeably smaller. Nitrogen broadening is very close to result for the case of argon though there is a marked difference between them for J-manifolds. Collisions with argon and nitrogen broaden the Q-branch almost 3 times more effectively than collisions with helium.  相似文献   

12.
Nanoparticles of MgFe2O4 are synthesized using sol–gel autocombustion method. Structural studies are carried out using X-ray diffraction (XRD). The XRD pattern of MgFe2O4 provides information about single-phase formation of spinel structure with cubic symmetry. The grain size and lattice constant are obtained using XRD data. The cation distribution is also proposed theoretically. The change in site preference of cations in nano-MgFe2O4 is compared with its bulk counterpart. The structural morphology of the nanoparticles is studied using Scanning Electron Microscopy (SEM). Formation of spinel structure is conformed using Fourier transform infrared spectroscopy (FTIR), which also lends support for the cation distribution proposed using XRD data. The effect of nanoregime on parameters such as bond length, vibration frequency and force constant are discussed with the help of FTIR data. The MH loop of MgFe2O4 has been traced using the Vibrating Sample Magnetometer (VSM) and magnetic parameters such as saturation magnetization (MS), coercivity (HC) and retentivity (MR) are obtained from VSM data.  相似文献   

13.
The Fourier transform gas-phase IR spectrum of 1,3,4-thiadiazole, C2H2N2S, has been recorded with a resolution of ca. 0.003 cm−1 in the 800-1500 cm−1 spectral region. Five fundamental bands ν2(A1; 1391.9 cm−1), ν4(A1; 964.4 cm−1), ν5(A1; 894.6 cm−1), ν9(B1; 821.5 cm−1), and ν14(B2; 898.4 cm−1) have been analysed using the Watson model. Ground state rotational and quartic centrifugal distortion constants as well as upper state spectroscopic constants have been obtained from fits. The ν4 and ν9 bands are unperturbed while a strong c-Coriolis resonance perturbs the close-lying ν5 and ν14 bands. This dyad system has been analysed by a model including first and second order c-Coriolis resonance using the theoretically predicted Coriolis coupling constant . The ν2 band is strongly perturbed by a local resonance, and we obtain a set of spectroscopic parameters using a model including second order a-Coriolis resonance with the inactive ν10 + ν14 band. Ground state rotational and quartic centrifugal distortion constants, anharmonic frequencies, and vibration-rotational α-constants predicted by quantum chemical calculations using a cc-pVTZ basis and B3LYP methodology, have been compared with the present experimental data, where there is generally good agreement.  相似文献   

14.
Rotationally resolved vibrational spectra of the three lowest frequency bands of the four-membered heterocycle azetidine (c-C3H6NH) have been collected with a resolution of 0.00096 cm−1 using the far infrared beamline at the Canadian Light Source synchrotron. The modes observed correspond principally to motions best described as: β-CH2 rock (ν14) at 736.701310(7) cm−1, ring deformation (ν15) at 648.116041(8) cm−1, and the ring puckering mode (ν16) at 207.727053(9) cm−1. A global fit of 14 276 rovibrational transitions from the three bands provided an accurate set of ground state spectroscopic constants as well as excited state parameters for each of the three vibrational modes. The ground state structure was determined to be that of the puckered conformer having the NH bond in an equatorial arrangement.  相似文献   

15.
The Fourier transform gas-phase IR spectrum of 1,2,3-thiadiazole, C2H2N2S, has been recorded with a resolution of ca. 0.003 cm−1 in the 700-1100 cm−1 spectral region. Four fundamental bands ν6(A/; 1101.8 cm−1), ν7(A/; 1038.8 cm−1), ν9(A/, 858.9 cm−1), and ν13(A//; 746.2 cm−1) have been analyzed using the Watson model in A-reduction. Two additional bands, ν8 (A/; 894.6 cm−1) and ν12(A//; 881.2 cm−1) were assigned by their weak Q-branches. Ground state rotational and quartic centrifugal distortion constants as well as upper state spectroscopic constants have been obtained from fits. A number of weak global and local interactions are present in the bands. The resonances identified were qualitatively explained by Coriolis type perturbations with neighboring levels. Ground state rotational and quartic centrifugal distortion constants, anharmonic frequencies, and vibration-rotational α-constants predicted by quantum chemical calculations using a cc-pVTZ basis and B3LYP methodology, have been compared with the present experimental data, where there is generally good agreement.  相似文献   

16.
The analysis of the absorption spectrum of 12CD3H, previously reported for the region 1200–1400 cm?1 concerned with the ν5 band, is now extended to cover the region 872–1213 cm?1 including the two bands ν3 and ν6. These are centered at 1004.553 and 1035.917 cm?1, respectively, and strongly coupled by a Coriolis interaction. A formulation taking this interaction into account rigorously was used; as a result, the energies for the upper states v3 = 1 and v6 = 1 are derived as eigenvalues of an effective Hamiltonian
(J. Mol. Spectrosc.79, 31–46 (1980)). The fit of the upper-state constants based on 1434 observed transitions including J′ and K′ values up to 22 leads to a set of 22 significant values which reproduce the observed wavenumbers with a standard deviation of 0.007 cm?1 close to the experimental uncertainties.  相似文献   

17.
Infrared spectra of OCS-C2H2 and OCS-C2D2 complexes in the region of the C-O stretching fundamental of OCS (∼2060 cm−1) are studied in a pulsed supersonic slit-jet expansion using a tunable diode laser. For each complex, two bands are observed and assigned to distinct near-parallel and the T-shaped isomers. Ground state parameters were previously determined from microwave studies, so analysis of the infrared spectra gives information on the vibrational shifts upon complex formation as well as rotational and centrifugal distortion parameters for the excited states. All four bands show a red shift with respect to the monomer band origin, with the T-shaped isomer having a much larger shift than the near-parallel isomer. Disappearance of the T-shaped isomer when argon is used as a carrier gas supports the notion that the near-parallel isomer is the lowest energy form of the complex.  相似文献   

18.
19.
140Tb and 141Dy were produced via fusion evaporation in the reaction 40Ca+106Cd. Their β-delayed proton decays were studied by means of “p-γ” coincidence in combination with a He-jet tape transport system, including half-lives, proton energy spectra, γ-transitions following the proton emissions, and the branching ratios to the low-lying states in the grand-daughter nuclei. The ground-state spins and parities of 140Tb and 141Dy were extracted as 7± and 9/2±, respectively, by fitting the experimental data with a statistical model calculation. The configuration-constrained nuclear potential energy surfaces (NPES) of 140Tb and 141Dy were calculated by using the Woods-Saxon Strutinsky method, which indicate the ground-state spins and parities of 140Tb and 141Dy to be 7+and 9/2, respectively. In addition, the configuration-constrained NPES of 143Dy was also calculated by using the same method. From the NPES a 1/2+ ground state and a 11/2 isomer with the excitation energy of 198keV were found. The calculated results are consistent with our experimental data on the decay of 143Dy reported in Eur. Phys. J., 2003, A16: 347—351.  相似文献   

20.
The infrared spectral regions of the P-D stretching fundamental band ν2 and the first overtone band 2ν2 of PH2D were recorded with a resolution of 2.7×10−3 and , respectively. In the analysis about 710 and 440 transitions were assigned to the ν2 and 2ν2 bands. These provided 358 and 268 upper rovibrational energy terms, respectively. Resonance interactions between the states (010000) and (000200) were taken into account in the Hamiltonian used to fit upper energies of the (010000) state. The rovibrational energies of the (020000) state were fitted with a Hamiltonian for an isolated vibrational state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号