首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A theoretical model of medium-density polydisperse magnetic fluids is proposed. The model takes into account that the major fraction of particles in typical ferrofluids is characterized by a magnetic core diameter of about 10 nm. In addition, there is a certain proportion of large particles with a core diameter of about 16 nm. As a result of the magnetic dipole interaction, the large particles form chain aggregates. Small particles, for which the magnetic dipole interaction energy (both with each other and with large particles) is smaller than the thermal energy, remain in the individual nonaggregated state. The distribution of chains with respect to the number of (large) particles and some rheological characteristics of the ferrofluids are determined. The proposed model is capable of explaining, in principle, the giant magnetoviscosity effect and a strong dependence of the rheological properties of ferrofluids on the shear rate observed in some recent experiments.  相似文献   

2.
The particle growth in plasma reactor were investigated by using the discrete-monodisperse (D-M) model for various process conditions. The monodisperse large sized particle distribution predicted by the D-M model are in good agreement with the large sized particles by the discrete-sectional model and also in the experiments by Shiratani et al. (1996). Some fractions of the small size particles are in a neutral state or even charged positively, but most of the large sized monodisperse particles are charged negatively. As the mass generation rate of monomers increases, the large sized particles grow more quickly and the production rate of nanoparticles of 100nm by plasma reactor increases. As the initial electron concentration or the monomer diameter increases, it takes longer time for the large sized particles to grow up to 100nm, but the large sized particle concentration of 100nm increases and the resulting production rate of large sized particles of 100nm increases. As the residence time increases, the time for the large sized particles to grow up to 100nm decreases and the large sized particle concentration of 100nm increases and, as a result, the production rate of large sized particles of 100nm increases. We propose that the plasma reactor can be a good candidate to produce monodisperse nanoparticles.  相似文献   

3.
The rotational motion and orientational distribution of ellipsoidal particles in turbulent flows are of significance in environmental and engineering applications. Whereas the translational motion of an ellipsoidal particle is controlled by the turbulent motions at large scales, its rotational motion is determined by the fluid velocity gradient tensor at small scales, which raises a challenge when predicting the rotational dispersion of ellipsoidal particles using large eddy simulation (LES) method due to the lack of subgrid scale (SGS) fluid motions. We report the effects of the SGS fluid motions on the orientational and rotational statistics, such as the alignment between the long axis of ellipsoidal particles and the vorticity, the mean rotational energy at various aspect ratios against those obtained with direct numerical simulation (DNS) and filtered DNS. The performances of a stochastic differential equation (SDE) model for the SGS velocity gradient seen by the particles and the approximate deconvolution method (ADM) for LES are investigated. It is found that the missing SGS fluid motions in LES flow fields have significant effects on the rotational statistics of ellipsoidal particles. Alignment between the particles and the vorticity is weakened; and the rotational energy of the particles is reduced in LES. The SGS-SDE model leads to a large error in predicting the alignment between the particles and the vorticity and over-predicts the rotational energy of rod-like particles. The ADM significantly improves the rotational energy prediction of particles in LES.  相似文献   

4.
Mechanism of structure formation in bidispersed colloids is important for its physical and optical properties. It is microscopically observed that the mechanism of chain formation in magnetic nanofluid based magnetorheological (MR) fluid is quite different from that in the conventional MR fluid. Under the application of magnetic field the magnetic nanoparticles are filled inside the structural microcavities formed due to the association of large magnetic particles, and some of the magnetic nanoparticles are attached at the end of the chains formed by the large particles. The dipolar energy of the large particles in a magnetic nanofluid matrix becomes effective magnetic permeability (μeff) times smaller than that of the neutral medium. Inclusion of magnetic nanoparticles (∼10 nm) with large magnetic particles (∼3-5 μm) restricts the aggregation of large particles, which causes the field induced phase separation in MR fluids. Hence, nanofluid based MR fluids are more stable than conventional MR fluids, which subsequently increase their application potentiality.  相似文献   

5.
Light scattering by large mineral-dust particles with small-scale surface roughness is investigated by comparing model simulations with laboratory-measured scattering matrices of two distinct dust samples collected from the Sahara desert. The samples have been chosen on the basis of their large effective radii, and the simulations are based on their measured size distributions. Size parameters larger than about 30 are modeled using a modified ray-optics model RODS (Ray optics with diffuse and specular interactions), while smaller particles are simulated with a T-matrix model. RODS allows us to mimic the surface roughness of large dust particles by covering the particle surface by a thin layer of external scatterers with specific single-scattering properties. The Gaussian-random-sphere geometry is used for the shapes of large dust particles. Small particles are modeled as an axial-ratio distribution of spheroids with smooth surfaces. One of the samples consists wholly of large particles and its scattering matrix can be reproduced very well by the RODS model, except for the phase function. The incorporation of wavelength-scale roughness is, however, necessary for good fits. The other sample, consisting of both small and large particles, proves more challenging to match with simulations. The analysis indicates, however, that the difficulties arise at least partially from the small-particle contribution, while RODS results are consistent with the measurements. Further, the results imply that the agreement with measurements would improve if roughness could also be accounted for in the small-particle simulations. Overall, the RODS method seems promising for modeling the optical properties of mineral-dust particles much larger than the wavelength.  相似文献   

6.
Equilibrium distribution functions are obtained for boson and fermion ensembles with a limited number of particles. It is shown that the number-of-particle distribution functions in different quantum states are statistically dependent; this dependence disappears only for a large number of particles in the ensemble. The distributions are transformed into the Boltzmann distribution at a high temperature and into the Bose-Einstein and Fermi-Dirac distributions for a large number of particles in the ensemble.  相似文献   

7.
The intrinsic structure of spherical SiO2 particles synthesized by hydrolysis of tetraethyl orthosilicate in an alcohol-water-ammonia medium was studied using transmission electron microscopy. It was established that the relatively large spherical silica particles were “tertiary” structures made up of smaller spherical particles (“ secondary” particles), which in turn consisted of even smaller primary spherical particles 5–10 nm in diameter. It was shown that, under the experimental conditions, the large SiO2 particles can contain a central core comprising primary particles surrounded by several layers of secondary particles smaller than the core diameter.  相似文献   

8.
Scattering of particles in the gravitational field of rotating black holes is considered. It is shown that scattering energy of particles in the centre of mass system can obtain very large values not only for extremal black holes but also for nonextremal ones. Extraction of energy after the collision is investigated. It is shown that due to the Penrose process the energy of the particle escaping the hole at infinity can be large. Contradictions in the problem of getting high energetic particles escaping the black hole are resolved.  相似文献   

9.
We computationally study shear-induced segregation of different-sized particles in vertical chute flow. We find that, for low solid fractions, large particles segregate toward regions of low shear rates where the granular temperature (velocity variance) is low. As the solid fraction increases, this trend reverses, and large particles segregate toward regions of high shear rates and temperatures. We find that this is a global phenomenon: local segregation trends reverse at high system solid fractions even where local solid fractions are small. The reversal corresponds to the growth of a single enduring cluster of 30%-60% of the particles that we propose changes the segregation dynamics.  相似文献   

10.
A method describing light propagation in a plane-parallel light-scattering layer with large concentration of homogeneous particles is developed. It is based on the radiative transfer equation and the doubling method. The interference approximation is used to take into account collective scattering effects. Spectral dependence of transmitted light for a layer of nonabsorbing optically soft particles with subwavelength-sized particles is investigated. At small volume concentration of the particles the weak spectral dependences of wave exponents for coherently transmitted and diffuse light are observed. It is shown that in a layer with large volume concentration of the subwavelength-sized particles the wave exponent can exceed considerably the value of four, which takes place for the Rayleigh particles. The dependence of wave exponents for coherently transmitted and diffuse light on the refractive index and concentration of particles is investigated in detail. Multiple scattering of light results in the reduction of the exponent. The quantitative results are presented and discussed. It is shown that there is a range of wavelengths where the negative values of the wave exponent at the regime of multiple scattering are implemented.  相似文献   

11.
We present a realistic shape model for nonspherical, vesicular particles and use the model to derive single-scattering properties of volcanic fine-ash particles. Light-scattering computations with discrete-dipole approximation reveal that, qualitatively, scattering by the model particles resembles that of the measured, real volcanic ash particles. Comparison of compact and vesicular ash shows that porosity promotes positive degree of linear polarization and decreases the depolarization ratio for both large and small vesicles. Yet, the single-scattering properties of ash particles with large vesicles are found to be surprisingly similar to those of compact ash particles. A comparison with Mie computations of equal-volume spheres indicates that for small size parameters, the spherical shape underestimates the asymmetry parameter of volcanic ash particles; whereas, for larger size parameters, it is overestimated.  相似文献   

12.
张志刚  刘丰瑞  张青川  程腾  伍小平 《物理学报》2014,63(2):28701-028701
光镊技术被广泛应用于捕获和操纵微纳米尺寸颗粒,主要包括捕获水中透明性颗粒和空气中吸光性颗粒两种类型.本文用激光束照射毛玻璃散射片,透射光经透镜会聚后在透镜的像平面附近产生了主观散斑场.该散斑场为空间分布,包含大量的亮斑和暗斑.大量由亮斑包围的暗斑如同一个个空间能量陷阱,被用来捕获大量的吸光性墨粉颗粒,被捕获颗粒的尺寸约2—8μm,密度约1—2 g/cm3.采用红外显微镜拍摄到空间散斑场捕获颗粒的红外像,红外图像显示被捕获颗粒吸光后温度升高,证实了空间散斑场捕获吸光性颗粒的机理为光泳力原理.  相似文献   

13.
The traditional diffusion approach for calculation of the collision frequency function for coagulation of Brownian particles is critically analyzed and shown to be valid only in the particular case of coalescence of small particles with large ones and inapplicable to calculation of the coalescence rate for particles of comparable sizes. It is shown that coalescence of Brownian particles generally occurs in the kinetic regime (realized under condition of homogeneous spatial distribution of particles), however, the expression for the collision frequency function in the continuum mode of the kinetic regime formally coincides with the standard expression derived in the diffusion regime for the particular case of large and small particles. This explains the validity of the traditional form of the coagulation rate equation in a wide range of parameters, corresponding to the continuum mode. Transition from the continuum to the free molecular mode can be described by the interpolation expression derived within the new analytical approach with fitting parameters that can be specified numerically, avoiding semi-empirical approach of existing models.  相似文献   

14.
It is argued that the fitted charmed quark mass and Fermi momentum in the free parton model for semileptonic decays of charmed particles, are unreasonably large. Furthermore, the charmed quark mass needed to explain the estimated semileptonic width of charmed particles is also too large (~2 GeV). It is reasoned that the failure of the free parton picture is due to strong initial and final state binding effects.  相似文献   

15.
Experimental investigation of granular flows containing particles of several sizes and moving down slopes shows that segregation of coarse-grained, irregularly shaped particles induces a fingering instability at the propagating front. The size-segregation mechanism involves percolation of small particles downward and a corresponding migration of large ones toward the flow surface. Large particles at the flow surface experience velocities that are greater than average so that they migrate forward and begin to collect at the flow front. In the case of dry cohesionless flows, the instability depends upon these large particles at the flow perimeter being more angular and thus more resistant to flow than the smaller rounder ones in the interior. A simple analytical model predicts the fingering instability when friction of the flow front is greater than that of the following flow. The presence of viscous liquid inhibits both size-segregation and the development of the instability. Fluidization of dry flows permits segregation of large particles to flow perimeters, thus increasing permeability and permitting a similar instability that owes its development to the dry frictional perimeter that surrounds a partly fluidized interior. (c) 1999 American Institute of Physics.  相似文献   

16.
高速碰撞数值计算中的SPH分区算法   总被引:2,自引:1,他引:1  
卞梁  王肖钧  章杰  赵凯 《计算物理》2011,28(2):207-212
针对高速碰撞问题大变形局部化的特点,提出一种分区计算的光滑粒子法.将整个计算域划分为若干子域,在可能发生大变形的子域布置较多的粒子,其它子域布置较少的粒子.分析子域交界面上产生计算不稳定的原因并提出解决方案.采用该方法对长杆弹侵彻厚靶板问题进行数值模拟,并与传统方法进行对比.结果表明,分区算法在保证计算精度的前提下,能显著提高光滑粒子法的计算效率.  相似文献   

17.
张威  胡林  张兴刚 《物理学报》2016,65(2):24502-024502
堵塞行为是颗粒体系中一种常见的现象,其力学性质与堆积结构的关联非常复杂.本文采用离散元法研究了由两种不同半径颗粒组成的二维双分散无摩擦球形颗粒体系在临界堵塞态所呈现的结构特征,讨论了大小颗粒粒径比与大颗粒百分比对临界堵塞态的影响.数值模拟结果表明,当粒径比小于1.4时,临界平均接触数与大颗粒百分比关系不大,当粒径比大于1.4时随着大颗粒百分比的增大临界平均接触数先减小再增大.而临界体积分数在粒径比小于1.8时随着大颗粒百分比的增加先减小后增大,大于1.8时又基本不随大颗粒百分比而变化.大颗粒百分比在接近0或1时,系统近似为单分散体系,临界平均接触数与体积分数基本不随半径比的增大而变化;在接近0.5时,临界平均接触数随着半径比的增大逐渐减小,而临界体积分数则是先减小后增大.文中对大-小颗粒这一接触类型的百分比也进行了探讨,其值随着大颗粒百分比的增大呈二次函数的变化趋势,粒径比对这一变化趋势只有较小的影响.  相似文献   

18.
We present an analysis of backscattered light by agglomerated debris particles whose size is comparable with the wavelength. We consider agglomerates that consist of one or two large central particles and a few relatively small fragments surrounding the particles. We find that for the particles we studied, the attachment of small fragments onto the particles leads to a decrease of the negative polarization branch (NPB) at small phase angles in comparison with the branch produced by the isolated particles. For relatively large agglomerates (with size parameters x about 25) the internal scatter in the agglomerates may produce a secondary minimum of the NPB. In this case the second order of scatter between constituents of aggregates plays the dominant role.  相似文献   

19.
外混合气溶胶粒子光散射的等效性   总被引:8,自引:2,他引:6  
饶瑞中 《光学学报》1996,16(8):099-1108
以两种典型的气溶胶粒子组成的单分散和多分散处理混合气溶胶粒子系统的光散射的各效率因子,各散射截面和散射相函数分析了以等效折射率描述由具有不同折射率的各种粒子组成的混合气溶胶粒子系统的适用性,结果表明,对单分散系统,本不同的混合比下对于许多尺度参数吸收效率因子和散射相函数的等效性很差,对多分散系统,在不同的混合比下等效性较稳定但各散射光学量的余差很大,因而对多分散系外混合气溶胶粒子系统如使用等效折射  相似文献   

20.
Computer simulations were performed to study the dense mixtures of passive particles and active particles in two dimensions. Two systems with different kinds of passive particles(e.g., spherical particles and rod-like particles) were considered. At small active forces, the high-density and low-density regions emerge in both systems, indicating a phase separation. At higher active forces, the systems return to a homogeneous state with large fluctuation of particle area in contrast with the thermo-equilibrium state. Structurally, the rod-like particles accumulate loosely due to the shape anisotropy compared with the spherical particles at the high-density region. Moreover, there exists a positive correlation between Voronoi area and velocity of the particles. Additionally, a small number of active particles capably give rise to super-diffusion of passive particles in both systems when the self-propelled force is turned on.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号