首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
李艳杰  金光  张元  孔林 《中国光学》2015,8(2):220-226
将成像光学系统同时用作激光发射天线的共口径设计可有效减轻卫星载荷质量和应对各种突发状况。首先根据激光通信的能量计算链路,分析了激光发射天线的设计要求,明确了激光发射天线与成像光学系统的不同;然后根据特定的成像光学系统给出了3种具有普适性的共口径设计方法,并对这3种方法的性能进行了分析和比较,给出了它们的优缺点和适用范围;最后对所设计的共口径系统进行了发射光束仿真,经过对设计系统加工、装调后进行了室内的成像、通信实验,结果显示发射激光的最小束散角可达18.2 μrad,接近系统衍射极限,出射光斑质量良好,接收到的图像与成像系统所成图像肉眼观测无失配。初步证实该共口径设计可实现光学系统的成像和通信任务要求。  相似文献   

2.
刘莹奇 《光学技术》2012,38(5):583-587
设计了一套能实现机动式布站的大口径车载可见光、红外、激光光电跟踪测量光学系统。其主光学系统采用共口径光谱分光方式工作,系统有效口径1.2m,各成像通道成像质量均达到衍射极限;捕获电视系统采用连续变焦距光学系统,视场范围0.31°~4.57°;激光测距通道设计作用距离达20km。光学设计结果表明,此套光学系统能够用于空中和空间目标的运动轨迹、成像测量和实况景象记录。  相似文献   

3.
针对红外搜索跟踪系统对目标的探测,为提高光学系统在复杂背景下的探测能力,设计了双色红外共口径光学系统。系统工作波段为红外中波3 m~5 m和红外长波8 m~12 m,采用分光型RC系统实现双波段共孔径清晰成像,总焦距为400 mm,相对孔径D/f=1/2,全视场角为2,为了抑制中波的热辐射杂光,对中波系统实现了二次成像,通过红外材料与光焦度的合理分配实现了折反式被动消热差设计。设计结果表明,系统在-40℃~+60℃工作温度下像质优良,能够满足红外搜索跟踪系统的使用需求。  相似文献   

4.
陈洁  夏团结  杨童  杨磊  谢洪波 《光学学报》2023,(12):192-201
为提高导引结构的特征分辨能力和全天候工作能力,提出一种长波红外与激光共孔径的双模导引光学系统设计方案,利用被动红外模块搜索目标,通过主动激光雷达模块锁定目标并精确制导。为解决导引头内光学系统尺寸受限的问题,以Ritchey-Chretien结构为共用部分,通过次镜镀分光膜实现长波红外(8~12μm)反射光路与激光(1.064μm)透射光路的组合,并分析了不同光学遮拦情况对非相干成像系统调制传递函数衍射极限的影响。展示了F数为0.98、光学遮拦比为1/3的共孔径双模导引系统的实例,使用多片折射镜片实现对主、次镜残余像差的补偿,利用光学被动式消热差方法完成-40~60℃范围的长波红外无热化,具有良好的热稳定性和可加工性,可为双模导引光学系统的分析与设计提供参考。  相似文献   

5.
顿雄  金伟其  王霞 《光学学报》2014,(6):212-217
针对目前低成本、小型化、长焦距非制冷热成像系统要求光学系统具有成像质量高、相对孔径大、结构尺寸小、温度适应性广的特点,在对多种实现超紧凑型光学系统结构的分析比较基础上,选用折反式结构,设计了一种大相对孔径超紧凑型红外光学系统。该光学系统的相对孔径达到了1/0.89,远射比达到了0.67。结合该光学系统的结构特点,仅使用Ge材料即实现了-40℃~60℃温度范围内的被动无热化设计。采用杂散光分析软件对系统进行了杂散光分析,提出了合理的杂散光抑制措施。设计分析结果表明:该光学系统在工作温度范围内像质优良(其在不同环境温度下的调制传递函数均接近衍射限)、体积结构紧凑,杂散光可控,可满足小型化、长焦距非制冷热成像系统的使用需求。  相似文献   

6.
折反式大口径三组元红外变焦距系统设计   总被引:3,自引:0,他引:3  
分别论述了设计红外变焦距光学系统的曲线拟合法和解析法,并设计了大口径、三组元、机械补偿红外变焦距系统,系统的口径为500nm,系统焦距为750nm-3000mm。从计算结果看,设计的变焦距光学系统像面稳定,成像质量良好,接近或达到了衍射极限。  相似文献   

7.
为提高航空侦查识别目标能力以及满足部队全天候作战需要,设计了一种应用于全景航空侦查相机的可见光/红外双视场成像光学系统。可见光光学系统焦距为165 mm/660 mm,相对孔径为1:8.8,视场角为9.1°×6.8°/2.3°×1.7°;红外光学系统焦距为75 mm/300 mm,相对孔径为1:4,视场角为8.3°×6.2°/2.1°×1.6°。采用有限焦距光学系统前面加一个望远系统的方法实现变倍,根据红外器件及可见光器件的像元尺寸计算出红外系统及可见光系统的奈奎斯特频率分别为33 lp/mm和91 lp/mm。在33 lp/mm处,红外光学系统大、小视场的MTF值分别为为0.35和0.37,在91 lp/mm处,可见光光学系统大、小视场MTF值分别为0.41和0.4,成像质量接近衍射极限,表明光学系统成像质量良好,满足实际工程使用要求。  相似文献   

8.
在空间光学领域中,光学系统的发展趋势为长焦距、大视场、轻量化、大相对孔径、高成像质量等。为适应该发展趋势,对大口径反射式光学系统进行研究,在共轴三反系统的成像理论基础上,为避免中心遮拦,提高成像质量,采用视场离轴方式,设计了一款大口径离轴三反式光学系统。该光学系统在奈奎斯特空间频率17 lp/mm处,光学传递函数MTF大于0.75,成像质量接近衍射极限。此外,光学系统公差的合理分配是影响相机总体性能的主要因素,运用公差灵敏度分析和反转灵敏度分析,计算各公差对光学系统成像质量的影响,给出了合适的公差分配,经过模拟分析,按照给定的公差加工装调,系统光学传递函数大于0.55。  相似文献   

9.
对中波/短波偏振红外成像光学系统进行了研究,设计了一个新颖的共口径中波/短波偏振红外成像光学系统.该光学系统由全反射式无焦光学系统、分束镜、二级镘远系统、偏振组件和红外物镜系统组成,为了约束主反射镜、双面反射镜、分束镜和偏振片的H径,创造性地采用了_三次成像光学系统.光波经无焦光学系统后被分束镜分成中波红外波段(3~5 gm)和短波红外波段(1~2.5弘m).然后分别经两个物镜系统会聚到两个探测器上.实现了双波段共1:3径成像.给出了光学系统的设计结果.像质良好,满足整机使用要求.  相似文献   

10.
对双波段红外扫描成像光学系统进行了研究,结合三次成像技术和100%冷光栏效率技术,设计了一个共口径双通道红外扫描成像光学系统。该系统包括前端共用的双反射系统、分束镜、准直镜组、扫描镜和成像镜组。光波经过双反射系统在主镜之后被分束镜分成中波红外通道(3 m~5 m)和长波红外通道(10 m~12 m),经准直镜组及成像镜组会聚探测器上,实现中波红外系统与长波红外系统共口径同步成像。设计结果表明,长波红外系统传递函数在18 lp/mm处达到0.4以上,中波红外系统传递函数在18 lp/mm处达到0.78以上,满足实际应用的要求。  相似文献   

11.
为了提高超短脉冲激光的瞄准精度,基于自准直原理提出瞄准装置光学系统。以670 nm光纤耦合激光器为光源,设计指示光准直、扩束光学系统,准直光的不平行度达到3.2,设计焦距为350 mm,相对孔径1/5,离轴量50 mm的主激光离轴抛物面镜,其成像质量达到衍射极限,基于准直束光学系统和离轴抛物面镜,设计可适应670 nm和800 nm两种波长的20和100的瞄准和监测成像光学系统。提出一种小孔准直的安装调试方法,以指示光进行实验验证,结果表明:设计的光学系统成像光斑均匀,其物方分辨率达到4.1 m。  相似文献   

12.
高变倍比红外变焦距光学系统设计   总被引:6,自引:1,他引:5       下载免费PDF全文
刘峰  徐熙平  孙向阳  苏拾  段洁 《应用光学》2009,30(6):1020-1023
 采用长波160×120元非制冷焦平面阵列探测器,设计了工作于8μm~12μm波段折射式红外连续变焦光学系统,该系统具有大相对孔径,F数为1.2,变倍比10×,高成像质量等特点。系统使用锗和氯化钾两种普通红外材料,通过引入非球面校正系统轴外像差和高级像差,在中焦时采用平滑换根快速提高变倍比。系统在空间频率17lp/mm处,全焦距范围内调制传递函数(MTF)均在0.55以上,接近衍射极限;系统在接收半径17μm的探测器敏感元内,能量集中度大于72%,表明该系统具有良好的成像质量。  相似文献   

13.
张爽  朱万彬  李健  鲁秀娥 《中国光学》2018,11(6):1001-1010
光斑质量直接影响激光位移传感器测量的精度。为了提高激光位移传感器传感探头光学系统的成像质量,设计了传感探头四片式微小型光学系统。本文在理想成像基础上,分析光束在光学系统中能量传递的变化规律,对比光电探测器的感光能力,利用光学设计软件(ZEMAX)实现了激光位移传感器传感探头微小型光学系统的设计。通过理论计算分析,严格控制传感探头孔径光阑的大小,对光学系统进行优化处理,成像最大弥散斑半径低于3. 3μm,空间分辨率120lp/mm以下的传递函数MTF(Modulation Transfer Function)值大于0. 5,光线扇形图的最大像差小于5μm,畸变量低于0. 1859%。该光学系统具有良好的成像效果,可以满足激光位移传感器探测系统对成像系统成像光斑质量的要求,以保证传感器的测量精确度优于5μm。  相似文献   

14.
为了确定一种同步三通道激光告警光学系统的有效孔径并估算截获能量,建立了激光辐照远场传输模型,仿真研究了远场光斑半径、单通道入瞳半径和通道间相对能量差之间的数值关系.仿真结果表明:各通道之间最大相对能量差与远场光斑中心能量密度的大小无关,在激光远场光斑边沿处各通道之间的相对能量差最大;最大相对能量差限定时,远场光斑半径越大,允许的单通道入瞳半径也越大,但相应系统截获的脉冲能量或脉冲功率却相对减小;最大能量差限定为1%,远场光斑半径分别为2.5 m,4.0 m和7.5 m时,允许的最大单通道入瞳半径分别为3 mm, 5 mm和10 mm,相应系统截获的最大脉冲能量为1.14×10-5 J,7.54×10-6 J和2.68×10-6 J,最大脉冲功率为1.63 W, 1.08 W和0.38 W.  相似文献   

15.
对基模高斯光束经方形光阑限制光学系统的光斑传输变换规律进行了论述.对于任一共轴光学系统,在不考虑有效光阑前面元件的衍射和变换时,考察入射光经有效光阑和其后面的元件发生衍射,根据柯林斯公式,对于非成像光学系统,采用稳相法得到出射光场的振幅分布;对于成像光学系统,根据像传递原理得到出射光场的振幅分布,最后得出出射光斑大小由有效光阑边长与光阑处高斯光束腰斑大小比较决定的结论.  相似文献   

16.
为了实现高均匀性的半导体激光器泵浦光源,研究了成像型光束积分器中微透镜的变化对泵浦光均匀性的影响。详细讨论了微透镜数值孔径与入射光束的角度匹配的问题。推导了高斯光束经成像型光束积分器的光场分布模型,分析了微透镜的边缘衍射对光斑均匀性的影响,明确了微透镜孔径大小的取值范围,并利用ZEMAX进行了系统仿真及实验验证。结果表明,经优化后的成像型光束积分器实现了不均匀性为8.11%的矩形光斑。  相似文献   

17.
本文分析了红外干涉成像现状和难点,介绍了激光本振红外相干探测的原理,阐述了基于电子学的红外光谱细分和干涉成像原理,讨论了激光本振红外阵列探测器形式。激光本振和相干探测器的设置,可保证两个望远镜的红外信号相位的正确传递,在电子学实施窄带滤波形成的窄带红外信号有利于实现长基线干涉成像。在此基础上,类似微波综合孔径射电望远镜,通过不同空间位置的多个较小孔径,组合形成一个大的光学口径,以红外光谱“射电”望远镜形式实现高分辨率天文成像,可大幅降低红外成像系统的复杂度和体积重量。介绍了平流层飞艇平台的特点,该平台为长基线大衍射口径望远镜的安装提供了有利条件,且可大幅减少大气对天文观测的影响,有望成为天文观测的新型平台。给出了10 m基线、2 m衍射口径红外光谱干涉成像望远镜的布设方案,分析了其探测和成像性能,讨论了关键技术及其可能的技术途径。分析表明,基于平流层飞艇平台,3个2 m衍射口径望远镜的组合在10 m基线下可等效实现口径10 m望远镜的红外天文观测能力。  相似文献   

18.
Rao Z  Hesselink L  Harris JS 《Optics letters》2007,32(14):1995-1997
We report a high-intensity nano-aperture vertical-cavity surface-emitting laser (VCSEL) utilizing a bowtie-shaped aperture. A maximum power of 188 microW is achieved from a 180 nm bowtie aperture at a wavelength of 970 nm. The near-field full width at half-maximum intensity spot size 20 nm away from the bowtie aperture is 64 nm x 66 nm from simulation, and the peak near-field intensity is estimated to be as high as 47 mW/microm(2). This intensity is high enough to realize near-field optical recording, and the small spot size corresponds to storage densities up to 150 Gbits/in(2). The bowtie-aperture VCSEL also enables other applications, such as compact high-intensity probes for ultrahigh-resolution near-field imaging and single molecule fluorescence and spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号