首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Spontaneous and explicit chiral symmetry breaking is analyzed in Coulomb gauge QCD at finite temperatures, using an instantaneous approximation for the quark interaction and incorporating confinement through a running coupling constant. The thermodynamics of the quarks is treated approximatively by assuming that the momentum-dependent constituent quark mass sets the scale for thermodynamic fluctuations of colour singlet excitations. We investigate the class of a temperature independent and a temperature dependent interaction between quarks. In the chiral limit both temperature independent and a smooth temperature dependent interaction yields a second order chiral phase transition with critical exponents close to the values for a BCS super-conductor. For explicit chiral symmetry breaking we find a nearly constant pion mass below the transition temperature, but a strongly overdamped mode above. For a first order deconfining transition in the gluonic sector also the quark sector shows a first order chiral phase transition. The relevance of our results for relativistic heavy ion collisions is briefly discussed.  相似文献   

2.
We investigate the effect of composite pions on the behaviour of the chiral condensate at finite temperature within the Polyakov-loop improved NJL model. To this end we treat quark-antiquark correlations in the pion channel (bound states and scattering continuum) within a Beth–Uhlenbeck approach that uses medium-dependent phase shifts. A striking medium effect is the Mott transition which occurs when the binding energy vanishes and the discrete pion bound state merges the continuum. This transition is triggered by the lowering of the continuum edge due to the chiral restoration transition. This in turn also entails a modification of the Polyakov-loop so that the SU(3) center symmetry gets broken at finite temperature and dynamical quarks (and gluons) appear in the system, taking over the role of the dominant degrees of freedom from the pions. At low temperatures our model reproduces the chiral perturbation theory result for the chiral condensate while at high temperatures the PNJL model result is recovered. The new aspect of the current work is a consistent treatment of the chiral restoration transition region within the Beth–Uhlenbeck approach on the basis of mesonic phase shifts for the treatment of the correlations.  相似文献   

3.
We study the spectrum and eigenmodes of the QCD Dirac operator in a gauge background given by an instanton liquid model (ILM) at temperatures around the chiral phase transition. Generically we find the Dirac eigenvectors become more localized as the temperature is increased. At the chiral phase transition, both the low lying eigenmodes and the spectrum of the QCD Dirac operator undergo a transition to localization similar to the one observed in a disordered conductor. This suggests that Anderson localization is the fundamental mechanism driving the chiral phase transition. We also find an additional temperature dependent mobility edge (separating delocalized from localized eigenstates) in the bulk of the spectrum which moves toward lower eigenvalues as the temperature is increased. In both regions, the origin and the bulk, the transition to localization exhibits features of a 3D Anderson transition including multifractal eigenstates and spectral properties that are well described by critical statistics. Similar results are obtained in both the quenched and the unquenched case though the critical temperature in the unquenched case is lower. Finally we argue that our findings are not in principle restricted to the ILM approximation and may also be found in lattice simulations.  相似文献   

4.
《Nuclear Physics A》1996,609(4):537-561
We study some bulk thermodynamical characteristics, meson properties and the nucleon as a baryon-number-one soliton in hot quark matter in the NJL model as well as in hot nucleon matter in a hybrid NJL model in which the Dirac sea of quarks is combined with a Fermi sea of nucleons. In both cases, working in the mean-field approximation, we find a chiral phase transition from the Goldstone to the Wigner phase. At finite density the chiral order parameter and the constituent quark mass have a non-monotonic temperature dependence — at finite temperatures not close to the critical one they are less affected than in cold matter. Whereas quark matter is rather soft against thermal fluctuations and the corresponding chiral phase transition is smooth, nucleon matter is much stiffer and the chiral phase transition is very sharp. The thermodynamical variables show large discontinuities which is an indication for a first-order phase transition. We solve the B = 1 solitonic sector of the NJL model in the presence of external hot quark and nucleon media. In the hot medium at intermediate temperature the soliton is more bound and less swelled than in the case of cold matter. At some critical temperature, which for nucleon matter coincides with the critical temperature for the chiral phase transition, we find no more a localized solution. According to this model scenario one should expect a sharp phase transition from nucleon to quark matter.  相似文献   

5.
《Nuclear Physics B》2002,639(3):524-548
The phase diagram of two-color QCD as a function of temperature and baryon chemical potential is considered. Using a low-energy chiral Lagrangian based on the symmetries of the microscopic theory, we determine, at the one-loop level, the temperature dependence of the critical chemical potential for diquark condensation and the temperature dependence of the diquark condensate and baryon density. The prediction for the temperature dependence of the critical chemical potential is consistent with the one obtained for a dilute Bose gas. The associated phase transition is shown to be of second order for low temperatures and first order at higher temperatures. The tricritical point at which the second order phase transition ends is determined. The results are carried over to QCD with quarks in the adjoint representation and to ordinary QCD at a non-zero chemical potential for isospin.  相似文献   

6.
We investigate the chiral phase transition at finite temperatures and zero chemical potential with Dyson-Schwinger equations. Our truncation for the quark-gluon interaction includes mesonic degrees of freedom, which allows us to study the impact of the pions on the nature of the phase transition. Within the present scheme we find a 5% change of the critical temperature due to the pion backreaction whereas the mean field character of the transition is not changed.  相似文献   

7.
Using the linear sigma model, we have introduced the pion isospin chemical potential. The chiral phase transition is studied at finite temperatures and finite isospin densities. We have studied the μ-T phase diagram for the chiral phase transition and found the transition cannot happen below a certain low temperature because of the Bose-Einstein condensation in this system. Above that temperature, the chiral phase transition is studied by the isotherms of pressure versus density. We indicate that the transition, in the chiral limit, is a first-order transition from a low-density phase to a high-density phase like a gas-liquid phase transition.  相似文献   

8.
回顾了最近关于手征平滑过渡温度和手征相变温度的研究结果。首先给出了在零重子化学势能下的手征平滑过渡温度为156.5(1.5) MeV,其次,给出了在非零重子化学势能下手征相转变曲线的二阶及四阶曲率分别为0.012(4)和0.000(4)。接着讨论了在格点QCD中第一次得到的量子色动力学的手征相变温度。在热力学极限、连续极限及手征极限下,我们得到手征相变温度为132$^{+3}_{-6}$ MeV。  相似文献   

9.
The behavior of the chiral soliton model at high temperature is investigated.as well as the influence of thermal effects on the chiral soliton solutions and the fermion condensation is analysed.One possible physical mechanism is established,which is responsible for why there exists a difference between the critical temperature in deconfinement phase transition and that in chiral restoration phase transition.  相似文献   

10.
We present results for the chiral and deconfinement transition of two flavor QCD at finite temperature and chemical potential. To this end we study the quark condensate and its dual, the dressed Polyakov loop, with functional methods using a set of Dyson-Schwinger equations. The quark propagator is determined self-consistently within a truncation scheme including temperature and in-medium effects of the gluon propagator. For the chiral transition we find a crossover turning into a first order transition at a critical endpoint at large quark chemical potential, μEP/TEP≈3. For the deconfinement transition we find a pseudo-critical temperature above the chiral transition in the crossover region but coinciding transition temperatures close to the critical endpoint.  相似文献   

11.
The low energy dynamics of a certain D-brane configuration in string theory is described at weak t'Hooft coupling by a nonlocal version of the Nambu-Jona-Lasinio model. We study this system at finite temperature and strong t'Hooft coupling, using the string theory dual. We show that for sufficiently low temperatures chiral symmetry is broken, while for temperatures larger then the critical value, it gets restored. We compute the latent heat and observe that the phase transition is of the first order.  相似文献   

12.
We point out that, in analogy with spin waves in antiferromagnets, all parameters describing the real-time propagation of soft pions at temperatures below the QCD chiral phase transition can be expressed in terms of static correlators. This allows, in principle, the determination of the soft pion dispersion relation on the lattice. Using scaling and universality arguments, we determine the critical behavior of the parameters of pion propagation. We predict that, when the critical temperature is approached from below, the pole mass of the pion drops despite the growth of the pion screening mass. This fact is attributed to the decrease of the pion velocity near the phase transition.  相似文献   

13.
We study the influence of the chiral phase transition on the chiral magnetic effect. The azimuthal charge-particle correlations as functions of the temperature are calculated. It is found that there is a pronounced cusp in the correlations as the temperature reaches its critical value for the QCD phase transition. It is predicted that there will be a drastic suppression of the charge-particle correlations as the collision energy in RHIC decreases to below a critical value. We show then the azimuthal charge-particle correlations can be the signal to identify the occurrence of the QCD phase transitions in RHIC energy scan experiments.  相似文献   

14.
Chiral symmetry phase transition is studied by making use of the finite temperature Green's function and the path integral approach in the chiral soliton model. The temperature-dependent effective potential is obtained in the one-loop approximation, including quark and σ-, π-meson loop. The critical temperature-versus the nuclear density is calculated. At zero baryop density the critical temperature is 172 MeV. In nuclear medium it is found that the critical temperature decreases fast when the nuclear density is increasing.  相似文献   

15.
Density fluctuations resulting from spinodal decomposition in a nonequilibrium first-order chiral phase transition are explored. We show that such instabilities generate divergent fluctuations of conserved charges along the isothermal spinodal lines appearing in the coexistence region. Thus, divergent density fluctuations could be a signal not only for the critical end point but also for the first-order phase transition expected in strongly interacting matter. We also compute the mean-field critical exponent at the spinodal lines. Our analysis is performed in the mean-field approximation to the Nambu-Jona-Lasinio model formulated at finite temperature and density. However, our main conclusions are expected to be generic and model independent.  相似文献   

16.
With the Nambu-Jona-Lasinio (NJL) model we calculate the properties of pion and σ-meson at finite temperature and finite magnetic field. The obtained temperature and magnetic field strength dependence of the constituent quark mass M, the pion and σ-meson masses and the neutral pion decay constant indicates that, in the simple four fermion interaction model, there exists the magnetic catalysis effect. It also shows that the Gell-Mann-Oakes-Renner relation is violated obviously with the increasing of the temperature, and the effect of the magnetic field becomes pronounced only around the critical temperature. The deviation of the critical temperatures obtained with different criteria indicates that the chiral phase transition driven by the temperature in the magnetic field strength region we have considered is in fact a crossover.  相似文献   

17.
Within the framework of the Dyson-Schwinger equations and by means of Multiple Reflection Expansion,we study the effect of finite volume on the chiral phase transition in a sphere, and discuss in particular its influence on the possible location of the critical end point(CEP). According to our calculations, when we take a sphere instead of a cube, the influence of finite volume on phase transition is not as significant as previously calculated. For instance,as the radius of the spherical volume decreases from infinite to 2 fm, the critical temperature T c, at zero chemical potential and finite temperature, drops only slightly. At finite chemical potential and finite temperature, the location of CEP shifts towards smaller temperature and higher chemical potential, but the amplitude of the variation does not exceed 20%. As a result, we find that not only the size of the volume but also its shape have a considerable impact on the phase transition.  相似文献   

18.
Some recent theoretical developments of the QCD phase diagram are summarized. Chiral symmetry restoration and the confinement/deconfinement transition at nonzero temperature and quark densities are analyzed in the framework of an effective linear sigma model with three light quark flavors. The sensitivity of the chiral transition as well as the existence of a critical end point in the phase diagram on the value of the sigma mass is explored. The influence of the axial anomaly on the chiral critical surface is addressed. Finally, the modifications by the inclusion of the Polyakov loop on the phase structure are investigated.  相似文献   

19.
The thermodynamics of the classical frustrated spin chain near the transition point between the ferromagnetic and the helical phases is studied. The calculation of the partition and spin correlation functions at low temperature limit is reduced to the quantum mechanical problem of a particle in potential well. It is shown that the thermodynamic quantities are universal functions of the temperature normalized by the chiral domain wall energy. The obtained behavior of the static structure factor indicates that the short-range helical-type correlations existing at low temperatures on the helical side of the transition point disappear at some critical temperature, defining the Lifshitz point. It is also shown that the low-temperature susceptibility in the helical phase near the transition point has a maximum at some temperature. Such behavior is in agreement with that observed in several materials described by the quantum s = 1/2 version of this model.  相似文献   

20.
We present recent results from the UrQMD hybrid approach investigating the influence of a deconfinement phase transition on the dynamics of hot and dense nuclear matter. In the hydrodynamic stage an equation of state that incorporates a critical end-point (CEP) in line with lattice data is used. The equation of state describes chiral restoration as well as the deconfinement phase transition. We compare the results from this new equation of state to results obtained by applying a hadron resonance gas equation of state, focusing on bulk observables. Furthermore we will discuss future improvements of the hydrodynamic model. This includes the formulation of chiral fluid dynamics to be able to study the effects of a chiral critical point as well as considerable improvements in terms of computational time which would open up possibilities for observables that require high statistics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号