首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protoporphyrin IX (PpIX) is a porphyrin derivative that is accumulated in cancerous tissue in consequence of the tumor-specific metabolic alterations. The aim of this study was to evaluate the accumulation of PpIX in mice bearing renal cell carcinoma by spectroscopy analysis. A total of 24 male Balb/c mice, 6 weeks old, were divided into six groups: Normal (without inoculation of tumor cells) and 4, 8, 13, 16, and 20 days after inoculation of tumor cells. The orthotopic tumor model of renal cancer was used. Murine renal cell carcinoma (Renca cells) were inoculated into the subcapsular space of the kidney. Normal and tumor-bearing kidneys in different progression stages were removed and analyzed by ex-vivo spectroscopy and by microscopy, for tumor histometric analysis. Emission spectra were obtained by exciting the samples at 405 nm. Significant differences between normal and tumor-bearing kidneys in autofluorescence shape occurred in the 600–700 nm spectral region. A good correlation was found between emission band intensity at 635 nm and the tumor area.  相似文献   

2.
Prerequisites for successful flow cytometry investigations are specific antibodies labeled with appropriate fluorochromes and negligible autofluorescence of the untreated cells at the wavelength of interest. The aim of this study was (a) to characterize frequently used urological carcinoma cell lines with regard to their autofluorescence properties, (b) to demonstrate the autofluorescence as a serious interfering factor on FACS analysis of urological carcinoma cell lines and (c) to suggest an alternative to avoid interfering autofluorescence. Twenty-one cell lines originating from prostate carcinoma, renal cell carcinoma and bladder cancer were included in this study. The various cell lines were read on a flow cytometer in comparison to human erythrocytes as cells with low fluorescence intensity. Urological cell lines show a high autofluorescence when flow cytometry analyses are performed at the frequently used excitation wavelengths at 405 and 488 nm. At excitation wavelength of 633 nm, this problem was reduced and most of the cell lines (14/21) were without autofluorescence at the emission wavelength of 785 nm. In addition, with a spectrofluorometer three exemplary cell lysates were investigated. The above observations were confirmed. The dye APC-Cy7 is one suitable fluorochrome for successful investigation under these measurement conditions.  相似文献   

3.
A simple, rapid, selective and sensitive spectrofluorimetric method was described for the analysis of three nitrofuran drugs, namely, nifuroxazide (NX), nitrofurantoin (NT) and nitrofurazone (NZ). The method involved the alkaline hydrolysis of the studied drugs by warming with 0.1 M sodium hydroxide solution then dilution with distilled water for NX or 2-propanol for NT and NZ. The formed fluorophores were measured at 465 nm (λ Ex 265 nm), 458 nm (λ Ex 245 nm) and 445 nm (λ Ex 245 nm) for NX, NT and NZ, respectively. The reaction pathway was discussed and the structures of the fluorescent products were proposed. The different experimental parameters were studied and optimized. Regression analysis showed good correlation between fluorescence intensity and concentration over the ranges 0.08–1.00, 0.02–0.24 and 0.004–0.050 μg ml−1 for NX, NT and NZ, respectively. The limits of detection of the method were 8.0, 1.9 and 0.3 ng ml−1 for NX, NT and NZ, respectively. The proposed method was validated in terms of accuracy, precision and specificity, and it was successfully applied for the assay of the three nitrofurans in their different dosage forms. No interference was observed from common pharmaceutical adjuvants. The results were favorably compared with those obtained by reference spectrophotometric methods.  相似文献   

4.
Purpose: To investigate the potential of diffusion kurtosis imaging (DKI) for the assessment of renal fibrosis in chronic kidney disease (CKD), using histopathology as the reference standard.Methods: Eighty-nine CKD patients and twenty healthy volunteers were recruited in this study. DKI was performed in all participants and all CKD patients received renal biopsy. The values of mean diffusivity (MD) and mean kurtosis (MK) in the renal cortex and medulla were compared between CKD patients and healthy volunteers. The Spearman correlation coefficient was calculated to assess the relationship between MD, MK values and the estimated glomerular filtration rate (eGFR), serum creatinine (SCr), 24 h urinary protein (24 h-UPRO), histopathological fibrosis score.Results: The medullary MD values were significantly lower than cortex, while the cortical MK values were significantly lower than medulla for all participants. Renal parenchymal MD values were significantly lower in the CKD patients than healthy controls, whereas MK values were significantly higher in the CKD patients than healthy controls. In the CKD patients, the significantly negative correlation was observed between the renal parenchymal MD values and the 24 h-UPRO, SCr, histopathological fibrosis score, as well as between the renal parenchymal MK values and the eGFR, while the significantly positive correlation was found between the renal parenchymal MD values and the eGFR, as well as between the renal parenchymal MK values and the 24 h-UPRO, SCr, histopathological fibrosis score.Conclusion: DKI shows great potential in the noninvasive assessment of renal fibrosis in CKD.  相似文献   

5.
We measured and analyzed the behavior of the fluorescence of tryptophan water solutions with and without silver nanoparticles, excited by one, two and three photon processes. Two different colloids with silver nanoparticles with distinct diameters (0.65 nm and 9 nm) were used in the experiments. Fluorescence quenching was observed with one and two photon excitation. However, upon three-photon excitation, significant fluorescence enhancement was observed in the colloid. In this case excitation of the amino acid is assisted by the nonlinear absorption of infrared light by the silver nanoparticles. In this paper we are proposing a new way to explore metallic nanoparticles to enhance autofluorescence of biomolecules.  相似文献   

6.
To effectively image living cells with quantum dots (QDs), particularly for those cells containing high content of native fluorophores, the two-photon excitation (TPE) with a femto-second 800 nm laser was employed and compared with the single-photon excitations (SPE) of 405 nm and 488 nm in BY-2 Tobacco (BY-2-T) and human hepatocellular carcinoma (QGY) cells, respectively. The 405 nm SPE produced the bright photoluminescence (PL) signals of cellular QDs but also induced a strong autofluorescence(AF) from the native fluorophores like flavins in cells. The AF occupied about 30% and 13% of the total signals detected in QD imaging channel in the BY-2-T and QGY cells, respectively. With the excitation of 488 nm SPE, the PL signals were lower than those excited with the 405 nm SPE, although the AF signals were also reduced. The 800 nm TPE generated the best PL images of intracellular QDs with the highest signal ratio of PL to AF, because the two-photon absorption cross section of QDs is much higher than that of the native fluorophores. By means of the TPE, the reliable cellular imaging with QDs, even for the cells having the high AF background, can be achieved.  相似文献   

7.
PurposeTo investigate the utility of diffusion kurtosis imaging (DKI) MRI for evaluation of renal fibrosis in rats with unilateral ureteral obstruction (UUO).MethodsTwenty-five rats had UUO, and ten rats were subjected to sham operation as control. DKI was performed on a 3.0 T MRI scanner on days 1, 3, 5, and 7 after ligation. All rats then underwent 18F-FDG dynamic PET to evaluate unilateral renal function, followed by histological analysis to examine α-smooth muscle actin (α-SMA) expression. DKI metrics were assessed among the time points and between two sides, and compared with maximum standardized uptake value (SUVmax), serum levels of creatinine and urea, and fibrosis marker α-SMA.ResultsMean kurtosis (MK) on day 7, axial kurtosis (Ka) on days 3 and 7, mean diffusivity (MD) on days 1, 3, 5, and 7, and fractional anisotropy (FA) on days 3, 5, and 7 of cortex and medulla between the UUO and contralateral sides were significantly different (all p < 0.05). Over the course of UUO progression, there were significant changes in Ka, MD and FA of medulla (all p < 0.05). FA of medulla was positively correlated with SUVmax (r = 0.641, p < 0.001), and MD of cortex was negatively correlated with urea (r = −0.534, p = 0.001). MD of cortex was negatively correlated with α-SMA on UUO sides (r = −0.710, p < 0.001).ConclusionsDKI shows the potential for noninvasive assessment of renal fibrosis and unilateral renal function induced by UUO.  相似文献   

8.
《Ultrasonics》2013,53(1):29-35
The particles in a liquid decrease the ultrasonic intensity threshold required for cavitation onset. In this study, a new nanoconjugate composed of Protoporphyrin IX and gold nanoparticles (Au–PpIX) was used as a nucleation site for cavitation. The nonradiative relaxation time of Protoporphyrin IX in the presence of gold nanoparticles is longer than the similar time without gold nanoparticles. The acoustic cavitation activity was investigated via recording of the integrated sonoluminescence signal in the wavelength range of 220–700 nm in a gel phantom by a cooled charge coupled device (CCD) at different intensities of 1 MHz ultrasound. In order to confirm these results, a chemical dosimetric method was utilized, too. The recorded sonoluminescence signal in the gel phantom containing Au–PpIX was higher than the other phantoms. These records have been confirmed by the chemical dosimetric data. Therefore, we anticipate that a new nanoconjugate composed of Protoporphyrin IX and gold nanoparticles can act as an efficient sonoluminescence agent and could be introduced as a novel sonosensitizer for sonodynamic therapy.  相似文献   

9.
A photorefractive Bi12TiO20 (BTO) crystal is exposed with high intensity pulsed-laser beams 532 nm (the average intensity of the laser was 110 mW/cm2, the average intensity per pulse was 2 MW/cm2), and the photo-induced dynamics of the absorption between 480 and 900 nm are studied and explained by two long-lived energy levels in the forbidden band. The relaxation times of the long-lived energy levels are experimentally found to be 104 and 105 s. The hysteresis character of the absorption coefficient is discussed. PACS  42.70.Mp; 42.70.Gi  相似文献   

10.
Renal cell carcinoma (RCC) remains one of the greatest challenges of urological oncology and is the third leading cause of death in genitourinary cancers. RCCs are highly vascularized and are amenable to antiangiogenic therapy. Endostatin (ES) is a fragment of collagen XVIII that possesses antiangiogenic activity. In this study, we examined the potential of erythrocyte PpIX fluorescence spectroscopy for monitoring the efficacy of antiangiogenic therapy in metastatic renal cell carcinoma (mRCC), using an orthotopic metastatic mouse model. Balb/C-bearing Renca cells were treated with NIH/3T3-LendSN cells. Lung weight, nodule area, microvascular area (MVA), and erythrocyte PpIX fluorescence were evaluated. Emission spectra were obtained by exciting the samples at 405 nm. There was a significant decrease in lung wet weight, lung nodule area and MVA in the treated group compared to the control group (P < 0.001). Significant differences in autofluorescence shape were observed in the 620–650 nm spectral region. The most intense fluorescence peak was observed at ∼632 nm. The autofluorescence of the control samples was about 53% higher than that of normal blood (P < 0.05). In the group treated with ES, the autofluorescence was about 54% lower than in the control group (P < 0.05). Fluorescence intensity was positively correlated with the nodule area (R 2 = 0.8859; P < 0.001) and MVA (R 2 = 0.9431; P < 0.001) in the ES-treated group. These results demonstrate that the spectroscopic analysis method allows a selective detection of tumor masses. This preliminary study suggests that PpIX fluorescence may be useful as a biomarker for antiangiogenic cancer therapy.  相似文献   

11.
Recent advanced biophysical techniques allow us to monitor the cellular dynamics of biologically important molecules in real time. Bright, stable fluorophores are needed to accomplish this: photoblinking and photobleaching occurring in organic fluorophores and qdots make them an ill-suited option. In this study, we employed upconversion nanoparticles (UCNPs) since they exhibit no photobleaching or photoblinking. Another advantage of using UCNPs is that these particles absorb IR light (980 nm) and emit visible light (560 nm and 640 nm), which sig-nificantly eliminates background noise caused by autofluorescence. Moreover, excitation of UCNPs can occur using a CW-laser because they can be excited by wide-field illumination rather than requiring confocal illumination. Although a CW-laser would have been capable of exciting UCNPs, we were able to maximize the photon density and resulting number of photons emitted from UCNPs by employing a femto-second laser. Using a femto-second laser, we achieved 2.4 nm single-molecule localization accuracy with an exposure time of 2 ms. The UCNP particles and femto-second laser allowed us to stably monitor the molecular motors, kinesin and dynein, in cells.  相似文献   

12.
Autofluorescence of the mandible and femur bones taken from newborn rats (7-, 14- and 28-day old) was studied. Endogenous fluorophores were excited with 231 nm, 291 nm, 340 nm and 360 nm wavelengths. Modifications in content and microenvironment of both noncolagenous and collagenous constituents of bone tissue as well as metabolic coenzymes during the bone formation with age were reflected in fluorescence emission spectra. The increase of emission from peptide bonds and tryptophan residues was noted with rat age while for collagen and metabolic coenzymes at the first 2 weeks only. After maternal administration of indinavir the changes in fluorescence intensity and shifts in position of peak maximum were found. The distinct drop of emission from peptide bonds and tryptophan residues in studied bones was detected. In the case of collagen and metabolic coenzymes the red shift of peak maximum was revealed. Fluorescence spectroscopy could be used to follow bone development in newborn rats and effect of maternal indinavir administration on offspring.  相似文献   

13.
Toxicity of amorphous silica nanoparticles in mouse keratinocytes   总被引:1,自引:0,他引:1  
The present study was designed to examine the uptake, localization, and the cytotoxic effects of well-dispersed amorphous silica nanoparticles in mouse keratinocytes (HEL-30). Mouse keratinocytes were exposed for 24 h to various concentrations of amorphous silica nanoparticles in homogeneous suspensions of average size distribution (30, 48, 118, and 535 nm SiO2) and then assessed for uptake and biochemical changes. Results of transmission electron microscopy revealed all sizes of silica were taken up into the cells and localized into the cytoplasm. The lactate dehydrogenase (LDH) assay shows LDH leakage was dose- and size-dependent with exposure to 30 and 48 nm nanoparticles. However, no LDH leakage was observed for either 118 or 535 nm nanoparticles. The mitochondrial viability assay (MTT) showed significant toxicity for 30 and 48 nm at high concentrations (100 μg/mL) compared to the 118 and 535 nm particles. Further studies were carried out to investigate if cellular reduced GSH and mitochondria membrane potential are involved in the mechanism of SiO2 toxicity. The redox potential of cells (GSH) was reduced significantly at concentrations of 50, 100, and 200 μg/mL at 30 nm nanoparticle exposures. However, silica nanoparticles larger than 30 nm showed no changes in GSH levels. Reactive oxygen species (ROS) formation did not show any significant change between controls and the exposed cells. In summary, amorphous silica nanoparticles below 100 nm induced cytotoxicity suggest size of the particles is critical to produce biological effects.  相似文献   

14.
The electroluminescence efficiency at room temperature and low temperature (15 K) in a wide-narrow-well InGaN/GaN light-emitting diode with a narrow last well (1.5 nm) and a narrow next-to-last barrier (5 nm) is investigated to study the efficiency droop phenomenon. A reduced droop in the wide wells and a reduced droop at low temperatures reveals that inferior hole transportation ability induced Auger recombination is the root for the droop at high excitation levels.  相似文献   

15.
Renal cell carcinoma (RCC) accounts for approximately 3% of new cancer incidence and mortality in the United States. Unfortunately many RCC masses remain asymptomatic and nonpalpable until they are advanced. Diagnosis and localization of early carcinoma play an important role in the prevention and curative treatment of RCC. The autofluorescence of blood porphyrin of healthy and tumor induced in male SCID mice was analyzed using fluorescence and excitation spectroscopy. A significant contrast between normal and tumor blood could be established. Blood porphyrin fluorophore showed enhanced fluorescence band (around 630 nm) in function of the tumor growth. This indicates that either the autofluorescence intensity of the blood fluorescence may provide a good parameter for the “first approximation” characterization of the tumor stage.  相似文献   

16.
Cell–cell adhesion is probably the best cell function to be considered for biophysical modeling from micrometer to the molecular level. The aim of this study is to find a relation between the bulk properties of erythrocytes suspension (like surface tension and viscosity) and erythrocytes adhesion. Our results showed that there is a strong correlation between surface tension and adhesion number (r2 = 0.85) and moderate correlation between erythrocytes suspension viscosity and adhesion number (r2 = 0.55). Our results were indicated that bulk properties of erythrocytes can affect directly on microscopic properties of erythrocytes.  相似文献   

17.
Tissue-equivalent radiochromic gel detector is sensitive in the regions of ultraviolet radiation (UVR) and gamma and X-rays. This study aims to investigate the spectral response and other optical properties of the ferrous sulphate, xylenol orange and gelatin (FXG) radiochromic gel dosimeter at particular UVR wavelengths. A total of nine monochromatic wavelengths were selected in the range of 240–400 nm with an increment of 20 nm. The FXG spectral response was estimated from the variation of spectral absorbance at 560 nm resulting from 1 h exposure to UVR beam at each chosen wavelength. Experimental results show that the FXG responsivity depends on the wavelength of the radiation and the optical path in the gel material. UVC and UVB photons have relatively higher photochemical effect than UVA; however, UVA penetration is deeper. Investigations showed that the FXG gel response is relatively constant between 240 and 320 nm, but it varies rapidly with wavelength in the UVA range and takes a minimal value at 360 nm. UVR spectral absorbance curves for different gel sample thicknesses were examined. The experiment showed that 6 mm of neutral gelatin or FXG gel samples was capable of absorbing >99.7% of the beam in the UV range of 240–290 nm.  相似文献   

18.
Two new, sensitive and selective spectrofluorimetric methods have been developed for the determination of gemifloxacin (GFX) in tablets and spiked plasma samples. Gemifloxacin, as a primary amine compound, reacts with 7-chloro-4-nitrobenzofurazon (NBD-Cl) (for method A) and fluorescamine (for method B) which are a highly sensitive fluorogenic reagents used in many investigations. For method A, the reaction product was measured spectrofluorimetrically at 516 nm with excitation at 451 nm. The reaction proceeded quantitatively at pH 8.5, 80 °C in 7 min. For method B, the method was based on the reaction between GFX and fluorescamine in borate buffer solution of pH 8.5 to give highly fluorescent derivatives that were measured at 481 nm using an excitation wavelength of 351 nm. The fluorescence intensity was directly proportional to the concentration over the range 40–200 ng mL−1 and 100–1,200 ng mL−1 for method A and B, respectively. Successful applications of the developed methods, for the drug determination in pharmaceutical preparations and spiked plasma samples, were performed.  相似文献   

19.
The quantum efficiency of the absorption on quantum confinement levels is investigated. This is achieved by modeling the electron confinement in a spherical quantum dot (QD). The confinement levels are calculated using both infinite and finite rectangular quantum wells. The spectral internal quantum efficiency is evaluated within both the models, by computing Einstein’s coefficients for the transitions between confinement levels. The size of QDs (1–3 nm radius) leads to negligible many body effects. The nature of the QD material and of the matrix embedding is taken into account in the finite rectangular quantum well approximation and introduces only a small correction. The temperature dependence of the efficiency is also taken into account. A numerical application is performed for a silicon QD of 2.5 nm radius, embedded in amorphous silica. It is proved that the absorption threshold shifts toward the far infrared limit and that the spectral internal quantum efficiency reaches 4–5% at the threshold.  相似文献   

20.
Laser-induced autofluorescence for medical diagnosis   总被引:1,自引:0,他引:1  
The naturally occurring autofluorescence of cells and tissues is based on biomolecules containing intrinsic fluorophores, such as porphyrins, the amino acids tryptophan and tyrosine, and the coenzymes NADH, NADPH, and flavins. Coenzymes fluoresce in the blue/green spectral region (fluorecence lifetimes: 0.5–6 ns) and are highly sensitive indicators of metabolic function. Steadystate and time-resolved blue-green autofluorescence is, therefore, an appropriate measure of the function of the respiratory chain as well as of cellular and tissue damage. Autofluorescence in the yellow/red spectral region is based mainly on endogenous porphyrins and metalloporphyrins, such as coproporphyrin, protoporphyrin (fluorescence lifetime of porphyrin monomers: >10 ns), and Zn-protoporphyrin (2 ns). Various pathological microorganisms such asPropionibacterium acnes, Pseudomonas aeruginosa, Actinomyces odontolyticus, Bacteroides intermedius, andSaccharomyces cerevisiae are able to synthesize large amounts of these fluorophores and can therefore be located. This permits fluorescence-based detection of a variety of diseases, including early-stage dental caries, dental plaque, acne vulgaris, otitis externa, and squamous cell carcinoma. The sensitivity of noninvasive autofluorescence diagnostics can be enhanced by time-gated fluorescence measurements using an appropriate time delay between ultrashort laser excitation and detection. For example, videocameras with ultrafast shutters, in the nanosecond region, can be used to create caries images of the teeth. Alternatively, autofluorescence can be enhanced by stimulating protoporphyrin biosynthesis with the exogenously administered porphyrin precursor 5-aminolevulinic acid (ALA). The fluorophore protoporphyrin IX (PP IX) is photolabile and photodynamically active. Irradiation of PP IX-containing tissue results in cytotoxic reactions which correlate with modifications in fluorescence due to photobleaching and singlet oxygen-dependent photoproduct formation. Therefore, on-line autofluorescence measurements during the phototreatment can yield information on the efficiency of ALA-based photodynamic therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号