首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
High-resolution Fourier-transform spectra of the D2S molecule in the regions of polyads of interacting vibrational states v = 3/2, 2, 5/2, 3 and 7/2 (v = v1 + v2/2 + v3) were recorded for the first time with a Bruker IFS 120 Fourier-transform interferometer and analysed. A global fit of all currently available rotation-vibration energies has been made for 22 vibrational states of the D2S molecule. The resulting set of 231 parameters reproduces all the initial experimental data (about 3670 vibration-rotation energies which correspond to more than 9700 ro-vibrational transitions with Jmax = 25) with accuracies close to the experimental uncertainties.  相似文献   

2.
Power series expansions of water eigenstate energies in J and K converge poorly and show alternating signs of the coefficients of the power series. Euler series can be used effectively to change an alternating series into one where all the coefficients have the same sign and where the radius of convergence is increased. This paper extends the Euler series to a two-dimensional series in K2 and [J (J + 1) − K2]. Application of this Euler series to the rotational energies of the ground state and the first 4 excited vibrational states of water allows a fit to experimental accuracy to J = 22 and K = 22. This fit has good convergence and also has predictive capability. It is much easier to fit the perturbed states because the Euler series allows the zero-order energy the perturbed states to be predicted with more confidence.  相似文献   

3.
The efficient vibrational energy transfer between the first excited vibrational state of N2 and the asymmetric stretching vibrational state of OCS has allowed the observation of many pure rotational lines in different vibrational states of OCS up to 4101 cm?1: (0001), (0111), (02l1), (1001), (0002), (2110), (03l0), (04l0), and (05l0). Accurate values of some rotational, centrifugal distortion and l-doubling constants are determined.  相似文献   

4.
Laser Stark measurements have been made on the 02000000 and 03100110 vibrational transitions of 16O12C32S, 16O12C34S, and 18O12C32S, and on the 03100110 transition of 16O13C32S, using a CO2 laser. In addition to providing dipole moment information for excited vibrational states, these measurements give vibrational band centers accurate to several megahertz. To aid in optical pumping experiments, several near coincidences between CO2 laser transitions and OCS absorption lines are discussed. Electric-field-allowed ΔJ = 0 transitions are observed for the 2ν2 band of 16O12C32S and 16O12C34S, as well as ΔJ = 2 transitions for the same band of 18O12C32S.  相似文献   

5.
Laser Stark spectra of carbonyl sulfide have been measured with parallel and perpendicular polarization of a 9.4 μm band CO2 laser with the Stark field up to 90 kV/cm. Components of the P(2) and R(1) transitions of the 0310–0110 band and those of the P(1) transition of the 0400–0200 band for 16O12C32S have been analyzed. Band origins, 1052.9446 (4) cm?1 for 0310–0110 and 1057.7860 (5) cm?1 for 0400–0200, and dipole moments, 0.7035 (16) D for 0110 and 0.6810 (24) D for 031P, are obtained.  相似文献   

6.
High-resolution (±0.003 cm−1), laser induced fluorescence (LIF) spectra of a supersonic molecular beam sample of manganese monohydride, MnH, have been recorded in the 17500-17800 cm−1 region of the (0, 0) band of the A7Π-X7Σ + system. The low-N branch features were modeled successfully by inclusion of the magnetic hyperfine mixings of spin components within a given low-N rotational level using a traditional ‘effective’ Hamiltonian approach. An improved set of spectroscopic constants has been extracted and compared with those from previous analyses. The optimum optical features for future optical Stark and Zeeman measurements are identified.  相似文献   

7.
The ammonia ν1 + 2ν4 perpendicular stretch-bend combination band has been investigated in spectra of 14NH3 and 15NH3 recorded in the 6400-6800 cm−1 region with an external cavity tunable diode laser (ECTDL) spectrometer. For 14NH3, new assignments were determined initially by extrapolating from published low-J jet-cooled beam results up to transitions of higher J and K. Corresponding ν1 + 2ν4 transitions for the 15NH3 species were then found by identifying similar patterns of lines with a characteristic downshift of approximately 9.7 cm−1. Assignments were confirmed employing ground-state combination differences. Term values, a-s inversion splittings, l-doubling energies and parameter estimates from simple single-state fits are reported for the two ammonia species.  相似文献   

8.
The absorption spectrum of the fundamental band of SO+ (X2Π) has been recorded using a mid-infrared tunable diode laser spectrometer with the velocity modulation technique in an AC glow discharge of He/SO2. Forty-two lines of SO+ were identified in the spectral range of 1230-1330 cm−1. The observed rovibrational transitions together with the microwave data published previously were fitted to a standard effective Hamiltonian for 2Π states. Molecular constants for the ground and υ = 1 vibrational states were derived. The band origin was determined to be 1291.5299(27) cm−1.  相似文献   

9.
A continuous wave cavity ringdown spectrometer with a Fabry-Perot quantum cascade laser has been used to collect a rotationally-resolved infrared spectrum of the ν8 vibrational band of methylene bromide in a slit nozzle expansion. In our laboratory, previous observations of the vibrational band were limited by spectral coverage to only the P and Q-branches and by the 24 MHz step-size of the laser [1]. The issue of limited spectral coverage has been resolved using a Fresnel rhomb and a wire grid polarizer to protect the laser from the destabilizing effects of back-reflection from the ringdown cavity. The frequency step-size of the spectrometer has been reduced from 24 MHz to 2 MHz. With both of these instrument enhancements, we have been able to record the R-branch of the vibrational band, and can resolve many lines that were previously blended in spectra acquired using a pinhole expansion nozzle. Significant hyperfine splitting was observed for the low-J transitions in the P and R-branches. It was possible to neglect the effects of hyperfine splitting for transitions involving J″ > 2 in the spectral assignment, and simulations using the constants obtained by fitting to Watson’s S-reduced Hamiltonian for CH279Br81Br, and the A-reduced form for CH279Br2 and CH281Br2, provide a good match to experimental spectra. A total of 297 transitions have been assigned for all three isotopologues, with a standard deviation of 0.00024 cm−1(∼7 MHz).  相似文献   

10.
The far-infrared and middle-infrared emission spectra of deuterated water vapour were measured at temperatures 1370, 1520, and 1940 K in the ranges 320-860 and 1750-3400 cm−1. The measurements were performed in an alumina cell with an effective length of hot gas of about 50 cm. More than 3550 new measured lines for the D216O molecule corresponding to transitions from highly excited rotational levels of the (0 2 0), (1 0 0), and (0 0 1) vibrational states are reported. These new lines correspond to rotational states with higher values of the rotational quantum numbers compared to previously published determinations: Jmax = 29 and Ka(max) = 22 for the (0 2 0) state, Jmax = 29 and Ka(max) = 25 for the (1 0 0) state, and Jmax = 30 and Ka(max) = 23 for the (0 0 1) state. The extended set of 1987 experimental rotational energy levels for the (0 2 0), (1 0 0), and (0 0 1) vibration states including all previously available data has been determined. For the data reduction we used the generating function model. The root mean square (RMS) deviation between observed and calculated values is 0.004 cm−1 for 1952 rovibrational levels of all three vibration states. A comparison of the observed energy levels with the best available values from the literature and with the global predictions from molecular electronic potential energy surfaces of water isotopic species [H. Partridge, D.W. Schwenke, J. Chem. Phys. 106 (1997) 4618] is discussed. The latter confirms a good consistency of mass-dependent DBOC corrections in the PS potential function with new experimental rovibrational data.  相似文献   

11.
Rotational spectrum of jet-cooled 9-cyanoanthracene has been observed in the 4-8 GHz region with a Fourier-transform microwave spectrometer. The present observation of 25 low-J transitions with J′′?11 has confirmed the previous results on the rotational constants of the ground state determined by rotational coherence spectroscopy [J. Phys. Chem. A. 105 (2001) 1131] and provided the values with significantly improved precision. An accurate set of hyperfine splitting constants is also reported for the 14N nuclear quadrupole coupling. The electric dipole moment was determined from Stark effect measurements on several split components: μb(=μ)=4.406(7) D.  相似文献   

12.
High resolution Fourier transform spectra of the HDS molecule were recorded and analyzed for the first time in the region of the bands ν1 + 2ν2 (3938.6 cm−1), ν1 + ν3 (4522.6 cm−1), 2ν2 + ν3 (4638.8 cm−1), 2ν1 + ν2 (4767.7 cm−1), ν1 + ν2 + ν3 (5525.2 cm−1), 3ν1 (5560.6 cm−1), ν1 + 2ν3 (7047.2 cm−1), and 2ν2 + 2ν3 (7123.9 cm−1). The ro-vibrational energies of the upper vibrational states of these bands together with the ro-vibrational energies of 12 other bands already studied at high resolution were used as inputs in a Global Fit analysis firstly described in [O.N. Ulenikov, G.A. Onopenko, H. Lin, J.-H. Zhang, Z.-Y. Zhou, Q.-S. Zhu, R.N. Tolchenov, J. Mol. Spectrosc. 189 (1998) 29-39]. In this case, the resonance interactions between the states (v1v2v3) and (v1 ± 2 v2 ? 1 v3 ? 1) were taken into account. The resulting set of 143 parameters reproduces all the experimental data (2984 vibration-rotation energies of 20 vibrational states which correspond to about 9700 ro-vibrational transitions with Jmax = 23) with accuracies comparable with the experimental uncertainties.  相似文献   

13.
Emission spectra of the A2Π3/2-X2Σ+ (0, 1), (0, 0), and (1, 0) bands and the B2Σ+-X2Σ+ (0, 1), (0, 0), (1, 0), (2, 0), and (3, 1) bands of ScS have been recorded in the 10 000-13 500 cm−1 region at a resolution of 0.05 cm−1 using a Fourier transform (FT) spectrometer. The A2Πr-X2Σ+ (1, 0) band as well as the B2Σ+-X2Σ+ (0, 0) and (1, 0) bands have been recorded at high resolution (±0.001 cm−1) by laser excitation spectroscopy using a supersonic molecular beam source. The FT spectral features range up to N = 148, while those recorded with the laser cover the “low-N” regions. The lines recorded with the laser exhibit splittings due to the 45Sc (I = 7/2) magnetic hyperfine interactions, which are large (∼6.65 GHz) in the X2Σ+ state and much smaller in the B2Σ+ and A2Π states. The energy levels were modeled using a traditional ‘effective’ Hamiltonian approach, and improved spectroscopic constants were extracted and compared with previous determinations and theoretical predictions.  相似文献   

14.
The infrared spectrum of the PD3 molecule has been measured in the region of the first stretching overtone bands on a Fourier transform spectrometer with a resolution of 0.0068 cm−1 and analyzed for the first time. More than 800 transitions with Jmax=15 have been assigned to the bands 2ν1 and ν1+ν3. An effective Hamiltonian was used which takes into account both the presence of resonance interactions between the states (2 0 0 0) and (1 0 1 0), and interactions of these with the third stretching vibrational state of the v=2 polyad, (0 0 2 0). A set of 44 spectroscopic parameters is obtained from the fit. This reproduces the 305 initial “experimental” upper rovibrational energies with an rms=0.0015 cm−1.  相似文献   

15.
The far-infrared emission spectra of deuterated water vapour were measured at different temperatures (1370, 1520, and 1950 K) in the range 320-860 cm−1 at a resolution of 0.0055 cm−1. The measurements were performed in an alumina cell with an effective length of hot gas of about 50 cm. More than 1150 new measured lines for the D216O molecule corresponding to transitions between highly excited rotational levels of the (0 0 0) and (0 1 0) vibrational states are reported. These new lines correspond to rotational states with higher values of the rotational quantum numbers compared to previously published determinations: Jmax=26 and for the (0 0 0) ← (0 0 0) band, Jmax=25 and for the (0 1 0) ← (0 1 0) band, and Jmax=26 and for the (0 1 0) ← (0 0 0) band. The estimated accuracy of the measured line positions is 0.0005 cm−1. To our knowledge no experimentally measured rotational transitions for D216O within an excited vibrational state have been available in the literature so far. An extended set of experimental rotational energy levels for (0 0 0) and (0 1 0) vibration states including all previously available data has been determined. For the data reduction we used the generating function model. The root mean square (RMS) deviation between observed and calculated values is 0.0012 cm−1 for 692 rotational levels of the (0 0 0) state and 0.0010 cm−1 for 639 rotational levels of the (0 1 0) vibrational state. A comparison of the observed energy levels with the best available values from the literature and with the global predictions from molecular electronic potential energy surface [J. Chem. Phys. 106 (1997) 4618] for the (0 0 0) and (0 1 0) states is discussed.  相似文献   

16.
Assignment of an HDO line list extracted from a recently measured H2O/HDO/D2O Fourier transform absorption spectrum recorded in the 11 600-23 000 cm−1 region by Bach et al. (M. Bach, S. Fally, P.-F. Coheur, M. Carleer, A. Jenouvrier, A.C. Vandaele, J. Mol. Spectrosc. 232 (2005) 341-350.) is presented. More than 94% of the 3256 lines are given quantum number assignments and ascribed to line absorption by HDO; most of the remaining lines are actually due to D2O. High accuracy variational predictions of line positions and intensities are used for the spectral assignment process. Assignments to the ν1 + 5ν3, 2ν2 + 5ν3, ν1 + ν2 + 3ν3 and ν1 + 6ν3 bands are presented for the first time. Comparisons are made with published ICLAS spectra covering the same spectral region and suggestions made for its recalibration. The results are used to illustrate the dynamical behaviour of highly excited vibrational states of HDO and to discuss previous vibrational assignments to high lying rotation-vibration states of this system.  相似文献   

17.
Using a narrow-band tunable XUV source, ultra-high resolution 1 XUV + 1 UV two-photon ionisation spectra were recorded of transitions to several singlet ungerade states in 14N2 and 15N2 in the range 106 000-109 000 cm−1. The natural linewidths of the individual rotational spectral lines were determined and the resulting lifetimes were found to depend on vibrational level and for the c31Πu (v = 1) level also on isotope. Furthermore, accurate transition frequencies were determined and for several bands, lines near bandhead regions were resolved for the first time.  相似文献   

18.
The high-resolution Fourier transform absorption spectrum of an isotopic sample of nitrogen dioxide, 15N16O2, was recorded in the 3.4 μm region. Starting from the results of a previous study [Y. Hamada, J. Mol. Struct. 242 (1991) 367-377] a new analysis of the ν1 + ν3 band located at 2858.7077 cm−1 has been performed. This new assignment concerns (1 0 1) energy levels involving rotational quantum numbers up to Ka = 10 and N = 54. Using a theoretical model which accounts for both the electron spin-rotation resonances within each vibrational state and the Coriolis interactions between the (1 2 0) and (1 0 1) vibrational states, the spin-rotation energy levels of the (1 0 1) vibrational state could be reproduced within their experimental uncertainty. In this way, the precise vibrational energy, rotational, spin-rotation, and coupling constants were achieved for the {(1 2 0), (1 0 1)} interacting states of 15N16O2. Using these parameters and the transition moment operator which was obtained for the main isotopic species, 14N16O2, a comprehensive list of the line positions and intensities was generated for the ν1 + ν3 band of 15N16O2.  相似文献   

19.
High resolution (3 + 1) and (2 + 1)REMPI spectra of HCl and DCl for total current detection at room temperature or TOF mass detection after jet cooling were recorded for the spectral region 89 000-89 600 cm−1. Analysis of the (3 + 1)REMPI spectra by use of three-photon absorption modeling allowed, for the first time, identification and characterization of the l (3Φ3) states. Consistent anomalies in spectral structures due to transitions to the j (3Σ) (0+) state are interpreted as being due to interactions with the V (1Σ+) ion-pair states. Interaction strengths are evaluated. Simulation analyses and determination of isotope shifts allowed evaluation of vibrational and rotational spectroscopic parameters for the l (3Φ3) and the j (3Σ) (0+) states for both molecules.  相似文献   

20.
High-sensitivity Intracavity Laser Absorption Spectroscopy (ICLAS) is used to measure the high resolution absorption spectrum of H218O between 12,580 and 13,550 cm−1. This spectral region covers the 3v+δ polyad of very weak absorption. Four isotopologues of water (H218O, H216O, H217O, HD18O) are found to contribute to the observed spectrum. Spectrum analysis is performed with the aid of variational calculations and allowed for assigning 1126 lines belonging to H218O, while only 160 H218O lines are included in the HITRAN-2008 database. Altogether, 823 accurate energy levels of H218O are determined from transitions attributed to 26 upper vibrational states, 438 of them being reported for the first time. New information includes energy levels of four newly observed vibrational states of H218O: (2 4 0), (1 4 1), (0 4 2) and (2 3 1) at 13,167.718, 13,212.678, 13,403.71 and 15,073.975 cm−1, respectively. H218O transitions involving highly excited bending states like (1 6 0), (0 6 1), (0 7 1), (1 7 0), (0 9 0) and even (0 10 0) have been identified as a result of an intensity borrowing from stronger bands via high-order resonance interactions. Thirty-six new energy levels of H217O, present with a 2% relative concentration in our sample, could be determined. The rotational structure of the (0 2 3) state of HD18O at 13,245.497 cm−1 is also reported for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号