首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《发光学报》2021,42(2)
水平谐振腔面发射分布反馈(Surface emitting distributed feedback,SE-DFB)半导体激光器因具有更好的光束质量获得了广泛关注。本文设计了波长为940 nm的水平谐振腔面发射分布反馈半导体激光器,分析了光栅的结构参数(形状、周期、占空比、刻蚀深度等)对激光器发光特性(线宽、边模抑制比、功率及斜率效率等)的影响。结合二阶光栅、脊形波导、电极及出光口、解理封装等器件工艺,制备出发光波长为940.3 nm的水平谐振腔面发射半导体激光器,线宽为0.52 nm,连续工作模式下发射功率为890 mW。  相似文献   

2.
808 nm高占空比大功率半导体激光器阵列   总被引:4,自引:3,他引:1       下载免费PDF全文
 采用渐变折射率分别限制单量子阱宽波导结构,通过降低非辐射复合、有源层载流子泄露、散射和吸收损耗来提高出射效率和降低激光阈值电流,从而提高半导体激光器阵列的输出功率;同时使P面具有更高的粒子掺杂数密度,优化N面合金条件,降低半导体激光器的串联电阻,降低焦耳热,提高了半导体激光器阵列的转换效率。利用金属有机化学气相淀积技术生长GaInAsP/InGaP/AlGaAs渐变折射率分别限制单量子阱宽波导结构激光器材料,利用该材料制成半导体激光线阵列在20%高占空比的输入电流下,半导体激光器的输出峰值功率达到189.64 W(180 A),斜率效率为1.1 W/A,中心波长为805.0 nm,阈值电流为7.6 A,电光转换效率最高可达55.4%;在1%占空比的输入电流下,阵列的输出峰值功率可达324.9 W(300 A),斜率效率为1.11 W/A,阈值电流为7.8 A,电光转化效率最高达55.6%,中心波长为804.5 nm。  相似文献   

3.
为了快捷而有效地检测半导体激光器的封装应力,设计了一种通过检测激光器巴条各个单元偏振度揭示出其封装应力分布的实验方法。实验测试半导体激光器巴条的各项参数,并利用有限元软件模拟,通过半导体能带与应力理论,说明偏振度与封装应力的影响关系。实验表明,巴条个别发光单元的偏振度较低、阈值电流较高是由于封装应力较大。通过计算,封装应力为141.92 MPa,偏振等效应力最大为26.73 MPa。实验器件在阈值以下的偏振度较好地反映了封装应力的分布趋势。利用阈值电流以下测量器件偏振度,可以为选择热沉及焊料材料、焊接工艺参数的改进等方面提供一个较为快捷而有效的检测方法。  相似文献   

4.
941nm2%占空比大功率半导体激光器线阵列   总被引:4,自引:3,他引:1  
计算了半导体激光器的激射波长与量子阱宽度以及有源层中In组分的关系,确定了941nm波长的量子阱宽度和In组分.并利用金属有机化合物气相淀积(MOCVD)技术生长了InGaAs/GaAs/AlGaAs分别限制应变单量子阱激光器材料.利用该材料制成半导体激光器线阵列的峰值波长为940.5 nm,光谱的FWHM为2.6 nm,在400 μs,50 Hz的输入电流下,输出峰值功率达到114.7 W(165 A),斜率效率高达0.81 W/A,阈值电流密度为103.7 A/cm2;串联电阻5 mΩ,最高转换效率可达36.9%.  相似文献   

5.
王贞福  杨国文  吴建耀  宋克昌  李秀山  宋云菲 《物理学报》2016,65(16):164203-164203
通过设计高效率808 nm非对称宽波导外延结构,减少P型波导层和包层的自由载流子光吸收,实现腔内光吸收损耗为0.63 cm~(-1).制备的808 nm半导体激光器阵列在室温25?C下,实现驱动电流135 A,工作电压1.76 V,连续输出功率大于150 W,斜率效率高达1.25 W/A,中心波长809.3 nm,器件最高电光转换效率为65.5%,这是目前国内报道的808 nm半导体激光器阵列的最高电光转换效率,达到国际同类器件最好水平.  相似文献   

6.
本文设计并制作了一种高效率、高可靠性的915 nm半导体激光器。半导体激光器是光纤激光器的关键部件,为了最大限度地提高器件的电光转换效率,在设计上采用双非对称大光腔波导结构,同时对量子阱结构、波导结构、掺杂以及器件结构进行了系统优化。器件模拟表明,在25℃环境温度下,器件的最高电光转换效率达到67%。采用金属有机气相沉积(MOCVD)法进行材料生长,随后制备了发光区域宽度为95μm、腔长为4.8 mm的激光芯片。测试表明,封装后器件的效率以及其它参数指标达到国际先进水平,在室温下阈值电流为1 A,斜率效率为1.18 W/A,最高电光转换效率达66.5%,输出功率12 W时,电光转换效率达到64.3%,测试结果与器件理论模拟高度吻合。经过约6 000 h的寿命加速测试,器件功率没有出现衰减,表明制作的高功率915 nm激光芯片具有很高的可靠性。  相似文献   

7.
采用金属有机物化学气相淀积(MOCVD)方法生长了InGaAs/GaAs应变量子阱,通过优化生长条件和采用应变缓冲层结构获得量子阱,将该量子阱结构应用于1 054 nm激光器的制备。经测试该器件具有9 mA低阈值电流和0.4 W/A较高的单面斜率效率,在驱动电流为50 mA时测得该应变量子阱光谱半宽为1.6nm,发射波长为1 054 nm。实验表明:通过优化工艺条件和采用应变缓冲层等手段,改善了应变量子阱质量,该结果应用于1 054 nm激光器的制备,取得了较好的结果。  相似文献   

8.
905 nm多有源区激光器主要用作车载激光雷达的信号源。为了进一步降低激光器的阈值电流、提高斜率效率,对激光器芯片结构进行优化。在非对称大光腔波导外延结构的三有源区激光器中引入隔离沟道结构,通过控制隔离沟道的刻蚀深度和间距来抑制电流的横向扩散效应,提升器件性能。所制备的腔长为1 mm、电极宽度为110μm、沟道刻蚀深度为7.0μm,间距为125μm的三有源区器件,能够将阈值电流降低到0.64 A,得到3.58 W/A的斜率效率,并在0.1%电流脉冲占空比的工作条件下获得134 W的峰值功率。  相似文献   

9.
研制了一套微通道封装结构半导体激光器的低温测试表征系统,实现了对高功率半导体激光器在-60℃~0℃低温范围内的输出功率、电光转换效率和光谱等关键参数稳定可靠的测试表征.采用计算流体力学及数值传热学方法,模拟了无水乙醇、三氯乙烯以及五氟丙烷三种载冷剂的散热性能.模拟结果表明,压降均为0.47bar时,采用无水乙醇作载冷剂的器件具有最低的热阻(热阻为0.73K/W)和最好的温度均匀性(中心和边缘发光单元温差为1.45℃).低温测试表征系统采用无水乙醇作为载冷剂,最大可实现0.5L/min的载冷液体流量,最多能容纳5个半导体激光器巴条同时工作.基于该低温测试表征系统,对微通道封装结构976nm半导体激光器巴条在6%占空比下的低温特性进行了研究.测试结果表明,载冷剂温度由0℃下降到-60℃,半导体激光器的输出功率由388.37 W提升到458.37 W,功率提升比为18.02%;电光转换效率由60.99%提升到67.25%,效率提升幅度为6.26%;中心波长由969.68nm蓝移到954.05nm.器件开启电压增加0.04V,阈值电流降低3.93A,串联电阻增加0.18mΩ,外微分量子效率提高11.84%.分析表明,阈值电流的减小及外微分量子效率的提高,是促使半导体激光器在低温下功率、效率提升的主要因素.研究表明,采用液体微通道冷却的低温工作方式,是实现半导体激光器高输出功率、高电光转换效率的一种有效手段.  相似文献   

10.
基于微腔理论和薄膜光学传输矩阵模型,设计并制备了孔径不同的谐振腔发光二极管.通过对外延结构的设计和对器件的制备与测试,详细研究了微腔结构、腔谱失谐以及有效辐射面积对器件发光效率、峰值波长和半波全宽等性能的影响,最终降低了器件的启亮电流并且提升了器件的外量子效率.制备的器件能够在100μA偏置电流下产生肉眼清晰可见的微瓦级光强,在1mA电流下达到0.16mW的光功率和7%的外量子效率.器件的峰值波长为650nm,并且在0.1~7mA范围内不随电流改变而发生变化.远场分布为均匀对称的圆形光斑,水平和竖直发散角分别为46°和48°.与普通发光二极管相比,该器件具有更高的发光效率和更好的单色性、方向性、波长稳定性,研究成果为实现微小电流驱动的高亮度发光器件提供了基础元件,并为谐振腔发光二极管在微电流下的光电特性研究提供参考与借鉴.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号