首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The European Physical Journal E - A model of a cross-linked polyelectrolyte gel has been examined using Monte Carlo simulations. The simple model contained a charged defect-free network represented...  相似文献   

2.
The conformation of a weakly dissociating (annealing) polyelectrolyte chain end-tethered to a similarly or oppositely charged planar surface is analyzed in the framework of scaling arguments. For a similarly charged interface an analytical model is also utilized. We demonstrate that at low salt concentration in bulk solution there is a strong coupling between the polyelectrolyte conformation and its degree of ionization. In the case of an oppositely charged (adsorbing) surface, adsorption promotes ionization of the annealing polyelectrolyte. As a result, the adsorbed layer thickness decreases as a function of surface charge density more rapidly for an annealing polyelectrolyte than for a quenched one. In the case of a similarly charged (repulsive) surface the chain ionization is suppressed, and the annealing polyelectrolyte chain is less extended than the quenched one. Moreover, an increase in surface charge density leads to non-monotonous extension of the tethered polyelectrolyte.Received: 16 September 2003, Published online: 5 February 2004PACS: 61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling - 82.35.Gh Polymers on surfaces; adhesion - 82.35.Rs Polyelectrolytes  相似文献   

3.
We study theoretically using scaling arguments the behavior of polyelectrolyte gels in poor solvents. Following the classical picture of Katchalsky, our approach is based on single-chain elasticity but it accounts for the recently proposed pearl necklace structure of polyelectrolytes in poor solvents. The elasticity both of gels at swelling equilibrium and of partially swollen gels is studied when parameters such as the ionic strength or the fraction of charged monomers are varied. Our theory could be useful to interpret recent experiments performed in Strasbourg that show that if identical gel samples are swollen to the same extent at different pH the sample with the highest charge has the lowest shear modulus. Received 7 April 2000  相似文献   

4.
A nitroxide spin label has been covalently attached to the polyelectrolyte poly(ethylene-alt-maleic acid) (P(E-alt-MA)) to study the interaction between this weak polyanion, the oppositely charged strong polycation poly(diallyldimethylammonium chloride) (PDADMAC) and water in swollen polyelectrolyte multilayers (PEM) by electron paramagnetic resonance (EPR) spectroscopy. If the spin-labeled polyanion has been used for the preparation of every double layer, the growth of the PEM film can be monitored by quantitative EPR. On the other hand, if the spin-labeled polyanion has been selectively placed in different layers in the PEM film the influence of the environment such as pH of the swelling medium of the mobility of the polyelectrolyte molecules positioned in the selected layer can be investigated.  相似文献   

5.
The possibility of a label-free electrical detection of layer-by-layer adsorbed polyelectrolyte (PE) multilayers using a field-effect capacitive electrolyte-diamond-insulator-semiconductor (EDIS) structure is investigated. Positively charged synthetic polyelectrolyte PAH (Poly (allylamine hydrochloride)) and negatively charged PSS (Poly (sodium 4-styrene sulfonate)) have been used as a model system. Nanocrystalline diamond films were grown on p-Si-SiO2 substrates by a microwave plasma-enhanced chemical vapor deposition from a mixture of methane and hydrogen. The EDIS sensors functionalized with charged macromolecules have been characterized by means of capacitance-voltage and constant-capacitance methods. Alternating shifts in the capacitance-voltage and constant-capacitance curves have been observed after the adsorption of each polyanion and polycation layer, respectively. The effect of the number of the adsorbed PE layers and polarity of the outermost layer on the sensor response is discussed.  相似文献   

6.
We report an experimental realization of a gel system in which frustrations exist and can be minimized, thus meeting two crucial criteria predicted to enable memory of conformations in polymers. The gels consist of a thermosensitive major monomer component and two minor components. One minor component is positively charged and will form complexes around negatively charged target molecules placed in solution. The complexes can be imprinted into the gel by then cross-linking the second minor component, which will form cross-links additional to those in the major polymer matrix. The complexes are destroyed and reformed upon swelling and reshrinking of the gels, showing that memorization has been achieved.  相似文献   

7.
QU Li-Jian 《理论物理通讯》2012,57(6):1091-1094
Scaling theory of charged cylindrical polyelectrolyte brushes is developed. The dependence of brush thickness on the grafting density, charge fraction, and chain length is analyzed. A full phase diagram is established. Characteristics and boundaries between different regimes of cylindrical polyelectrolyte brushes are summarized. Special attentions are paid to electrostatic interaction induced stiffening and counterion condensation effects. If the Bjerrum length of the solution is larger than the Kuhn length of the polyelectrolyte chains, counterion condensation occurs in the strongly charged polyelectrolyte brushes. On the contrary, the electrostatic interaction stretches the strongly charged grafted polyelectrolyte chains to their contour length.  相似文献   

8.
We report the swelling behavior of a polyelectrolyte copolymer gel in water, which consists of poly(N-isopropylacrylamide) and sodium acrylate. The diameter of the cylindrical gels was measured at room temperature under a continuous flow of solvent water (equivalent to an infinite amount of water; open system). After a sufficient water flow, the diameter of the gel in the limited amount of water (closed system) was measured as a function of the temperature. The gel in the open system was found to shrink as a result of the continuous flow of water, and the gel in the closed system began to swell again at the phase transition point by increasing the temperature. The effects of the degree of initial ion exchange by the water flow on the macroscopic swelling behavior were discussed in terms of the exchange of counterions (the ion dissociation of carboxyl groups) and of the creation and destruction of intermolecular forces (hydrogen bonding). It was concluded that the amount of solvent water determines the environmental variables, such as the pH and ion concentration, which affects the swelling properties of polyelectrolyte hydrogels; intermediate re-swollen states can be observed in a closed system.Received: 8 January 2004, Published online: 6 July 2004PACS: 82.35.Jk Copolymers, phase transitions, structure - 82.70.Gg Gels and sols - 82.30.Rs Hydrogen bonding, hydrophilic effects  相似文献   

9.
It has been known that some polyelectrolyte systems, e.g., betaine polymer and polycations, have an upper critical solution temperature (UCST) in water while polyanions seldom show such a temperature-dependent phase separation. Recently we have found a significant counterion- and solvent-specific UCST-type behavior for alkali metal poly(acrylate)s (PAAM) in aqueous organic solvent mixtures. Namely, the reduced viscosity significantly increased with increasing temperature which was ascribed to disintegration of the ion-clusters or the aggregated ion-pairs formed at the lower temperature. In the present study, we prepared PAAM gel samples by irradiating the aqueous solutions with γ-rays in variable doses to find that a significant gel swelling was induced by a temperature jump from 5 to 40°C in various kinds of aqueous organic solvent mixtures. The UCST-type behavior and the counterion- and solvent-specificities for the gel swelling turned out to be parallel to those for the corresponding solution systems. In addition to these expected results, an appreciable LCST-type deswelling was unexpectedly observed for collapsed gels in a relatively higher solvent concentration region. Further, the γ-ray doses, i.e., the degree of crosslinking, proved to affect the UCST behavior; the gel swelling ratio was more significant for gels prepared with higher doses.  相似文献   

10.
我们基于Flory-Huggins理论,建立理论模型研究水合作用与pH调控聚电解质刷的构象转变.理论模型考虑聚电解质链与水分子间的作用(聚电解质链的水合作用)、体系中的静电作用.研究发现,随着水合作用的改变,聚电解质刷出现由溶胀到塌缩的构象转变.由此表明了水合作用可在很大程度调节聚电解质刷的相变.通过分析pH的调控效应我们还发现,在碱性环境中(pH=8),聚电解质链单体的解离度增大,静电排斥会使得聚电解质刷溶胀.由此表明,聚电解质刷内水合作用与静电效应的耦合,将会共同决定聚电解质刷的构象转变特性.理论结果深刻揭示了水合作用的改变,会使得聚电解质刷体系发生相变,pH可在很大程度上改变其相变特性.  相似文献   

11.
Equilibrium structures of planar polyelectrolyte brushes formed by grafted chains carrying charges of opposite sign are examined by employing mean-field lattice theory. Two brushes of different architecture are considered: one formed by grafted diblock copolymers with oppositely charged blocks and the other being a mixed brush composed of oppositely charged homopolymers. The systems display nontrivial intrinsically inhomogeneous brush structures originating from the chain connectivity and the electrostatic interaction among the segments. In addition, a coexistence of stretched and coiled chains inside the brush is observed. The influence of the charges of the blocks, the relative length of the oppositely charged blocks, and the ionic strength of the solution on the brush inhomogeneity and structural differences between the two types of brushes are discussed. Received 14 March 2001 and Received in final form 18 June 2001  相似文献   

12.
We investigate the effect of counterion fluctuations in a single polyelectrolyte brush in the absence of added salt by systematically expanding the counterion free energy about Poisson-Boltzmann mean-field theory. We find that for strongly charged brushes, there is a collapse regime in which the brush height decreases with increasing charge on the polyelectrolyte chains. The transition to this collapsed regime is similar to the liquid-gas transition, which has a first-order line terminating at a critical point. We find that, for monovalent counterions, the transition is discontinuous in theta solvent, while for multivalent counterions, the transition is generally continuous. For collapsed brushes, the brush height is not independent of grafting density as it is for osmotic brushes, but scales linear with it.Received: 26 November 2003, Published online: 11 May 2004PACS: 61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling - 61.20.Qg Structure of associated liquids: electrolytes, molten salts, etc.  相似文献   

13.
We investigate the swelling of colloidal spherical polyelectrolyte brushes in the presence of different counterions. The colloidal particles consist of a solid poly(styrene) core of ca. 100 nm diameter onto which linear polyelectrolyte chains are chemically grafted. Two types of polyelectrolyte chains have been used here: The cationic polyelectrolyte poly(2-(acryloyl)ethyltrimethylammonium chloride)) (PATAC) and the anionic poly(styrenesulfonate) (PSS). Both systems are dispersed in water and the degree of swelling of the surface layer is studied by dynamic light scattering. Adding more and more salt leads to a strong shrinking of the surface layer as expected for polyelectrolyte brushes. It is shown that data obtained at low ionic strength can be collapsed on suitable master curves for monovalent and divalent counterions, respectively. For some ions, however, high salt concentrations may lead to a re-swelling of the brush layer in case of the cationic systems. This points to specific interactions of the counterions with the PATAC chains. This strong specific interaction between the counterions and the attached polyelectrolyte may even lead to flocculation of the particles at intermediate salt concentration. Surprisingly, for iodide and magnesium counterions the solubility increases again if the salt concentration is raised to 1 mol/l. Hence, specific interaction leads to salting-out effects as well as to salting-in effects for these colloidal particles. All specific effects seen at high concentrations of added salt can be explained by the increase of the reduced excluded-volume parameter which is due to the adsorption of salt ions.  相似文献   

14.
我们把Flory-Huggins模型(association models)推广应用到暴露于水蒸气中的聚电解质刷体系,考虑聚电解质-水氢键(P-W氢键)与水-水氢键(W-W氢键)、形成氢键与聚电解质链构象的耦合特性,研究水蒸气诱导的聚电解质刷构象转变的机理.研究发现,当P-W氢键效应起主导作用时,随着水蒸气浓度的增加,聚电解质刷会单调溶胀;P-W和W-W两种氢键效应,则会导致随着水蒸气浓度的增加,聚电解质刷的构象首先塌缩,然后开始溶胀的反常转变行为.基于本文的分析,可以预言,由于P-W氢键效应,聚电解质刷可以吸附水蒸气,吸附能力随聚电解质链长的增加而增强;当聚电解质链接枝密度足够高时,由于P-W和W-W两种氢键效应,增加体系中的水蒸气,会在聚电解质刷体系中形成由P-W氢键和W-W氢键交错链接的三维网络状凝胶结构.  相似文献   

15.
我们把 Flory−Huggins 模型(association models)推广应用暴露于水蒸气中的聚电解质刷体系,考虑聚电解质-水氢键(P-W氢键)与水-水氢键(W-W氢键)、形成氢键与聚电解质链构象的耦合特性,研究水蒸气诱导的聚电解质刷构象转变的机理.研究发现,当 P-W 氢键效应起主导作用时,随着水蒸气浓度的增加,聚电解质刷会单调溶胀;P-W 和 W-W 两种氢键效应,则会导致随着水蒸气浓度的增加,聚电解质刷的构象首先塌缩,然后开始溶胀的反常转变行为。基于本文的分析,可以预言,由于 P-W 氢键效应,聚电解质刷可以吸附水蒸气,吸附能力随聚电解质链长的增加而增强;当聚电解质链接枝密度足够高时,由于 P-W 和 W-W 两种氢键效应,增加体系中的水蒸气,会在聚电解质刷体系中形成由 P-W 氢键和 W-W 氢键交错链接的三维网络状凝胶结构。  相似文献   

16.
We present here a short review covering most of the experimental results on tethering charged chains by an end to a surface. A first class of experiments deals with solid surfaces where charged chains are either chemically grafted or adsorbed through a purposely chosen moiety. Structural studies have been carried out by scattering methods, spectroscopic techniques or microscopy. Forces between the polyelectrolyte layers covering the surfaces have also been obtained by using for instance, the surface force apparatus (SFA). A second class of experiments concerns polyelectrolytes, which are end-tethered to flexible surfaces like air–liquid or liquid–liquid interfaces. These experiments are fewer in number and mainly rely on the adsorption or spreading of charged diblock copolymers at the fluid interfaces.  相似文献   

17.
Mechanical properties of packings of deformable spheres of polyelectrolyte gel are studied experimentally. These particles are plunged into a brine. They have the property to swell and shrink when the concentration of salt of the solution is varied. An oedometric compression is performed imposing cycles of deformation at constant speed and constant salinity Cs. Under many different conditions, we study the laws of deformation relating the macroscopic compression force F, to the macroscopic strain . We find empirical non linear relations of the type . The values of this exponent m are discussed and compared to the results of measurements on a single sphere compressed on a plane as well as to the results of experiments and simulations on dry model granular assemblies. The swelling and deswelling properties of the spheres are used to perform isotropic compression tests. In this situation we determine the relation between the force at equilibrium and the macroscopic strain . The results are compared with those obtained in the oedometric compression tests. Received 27 January 1998  相似文献   

18.
We investigate the repulsive electrostatic interactions between a DNA polyelectrolyte and the charged walls of a fluidic nanoslit. The scaling of the DNA coil size with the physical slit height revealed electrostatic depletion regions that reduced the effective slit height. These regions exceeded the Debye screening length of the buffer, λ(D)(buffer), and saturated at ≈ 50 nm when λ(D)(buffer) reached 10 nm. We explain these results by modeling a semiflexible charged rod near a charged wall and the electrostatic screening by the polyelectrolyte. These results demonstrate the surprisingly long range over which a nanofluidic device can exert field-effect control over confined molecules.  相似文献   

19.
The origin and importance of swelling corrections in the field-theoretic model describing an isolated, unscreened polyelectrolyte chain below six dimensions are examined in detail using the renormalization theory of higher composite operators. It is shown that these corrections become relevant below an unspecified dimension d1 < 6, when the unphysical exact result v = 2(d ? 2) for the size exponent breaks down and the system should be described by a new model.  相似文献   

20.
There is abundant experimental evidence suggesting the existence of attractive interactions among identically charged polyelectrolytes in ordinary salt solutions. The presence of multivalent counterions is not required. We review the relevant literature in detail and conclude that it merits more attention than it has received. We discuss also some recent observations of a low ionic strength attraction of negatively charged DNA to the region of a negatively charged glass nanoslit where the floor of the nanoslit meets the walls, again in the absence of multivalent ions. On the theoretical side, it has become clear that purely electrostatic interactions require the presence of multivalent counterions if they are to generate like-charge attraction. Any theory of like-charge attraction in the absence of multivalent counterions must therefore contain a non-electrostatic component. We point out that counterion condensation theory, which has predicted like-charge polyelectrolyte attraction in an intermediate range of distances in ordinary 1:1 salt conditions, contains both electrostatic and non-electrostatic elements. The non-electrostatic component of the theory is the modeling constraint that the counterions fall into two explicit populations, condensed and uncondensed. As reviewed in the paper, this physically motivated constraint is supported by strong experimental evidence. We proceed to offer an explanation of the nanoslit observations by showing in an idealized model that the line of intersection of two intersecting planes is a virtual polyelectrolyte. Since we have previously developed a counterion condensation theory of attraction of two like-charged polyelectrolytes, our suggestion is that the DNA is attracted to the virtual polyelectrolytes that may be located in the nanoslit where floor meets walls. We present the detailed calculations needed to document this suggestion: an extension of previous theory to the case of polyelectrolytes with like but not identical charges; the demonstration of counterion condensation on a plane with bare charge density greater than an explicitly exhibited critical value; a calculation of the free energy of the plane; a calculation of the interaction of a line charge polyelectrolyte with a like-charged plane; and the detailed demonstration that the line of intersection of two planes is a virtual polyelectrolyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号