首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tang W  Liu Q  Wang X  Mi N  Wang P  Zhang J 《Ultrasonics》2008,48(1):66-73
Sonodynamic therapy (SDT) is a novel tumor therapy method. We investigated membrane fluidity, activity of the enzymes and membrane morphology in vitro post hematoporphyrin-SDT treatment. Furthermore, the potential mechanisms behind the changes in membrane fluidity and enzymic activity were discussed. Tumor cells were exposed to ultrasound at 1.75 MHz for up to 3 min in the presence and absence of hematoporphyrin. Fluorescence polarization, contents of Malonaldehyde, and levels of free fatty acid were assessed. Activity of enzymes was checked by the plumbic nitrate detection method. For the morphologic study, a scanning electron microscope was used to observe the cellular surface. Ultrasonically induced cell damage increased in the presence of HPD (from 15% to 24%). Compared with ultrasound treatment alone, the fluidity decreased from 5.037 to 3.908, malonaldehyde content and free fatty acid level increased from 0.743 nmol/mL to 0.979 nmol/mL and from 237.180 μmol/L to 730.769 μmol/L, respectively, post ultrasound combined with HPD treatment. Inactivity of adenylate cyclase and guanylate cyclase and significant deformation of the cellular surface were also observed post SDT treatment. Our results suggested that alterations in membrane modality and lipid composition played important roles in SDT-mediated inhibition of tumor growth, even inducing tumor cell death, which might be attributed to a sono-chemical activation mechanism.  相似文献   

2.
Wang XB  Liu QH  Wang P  Tang W  Hao Q 《Ultrasonics》2008,48(2):135-140
The present study was initiated to investigate the potential biological mechanism of cell killing effect on isolate sarcoma 180 (S180) cells induced by ultrasound activating protoporphyrin IX (PPIX). S180 cells were exposed to ultrasound for 30 s duration, at a frequency of 2.2 MHz and an acoustic power of 3 W/cm2 in the presence of 120 μM PPIX. The viability of cells was evaluated using trypan blue staining. The generation of oxygen free radicals in cell suspensions was detected immediately after treatment using a reactive oxygen detection kit. A copper reagent colorimetry method was used to measure the level of FFAs released into cell suspensions by the process of cell damage induced by ultrasound and PPIX treatment. Oxidative stress was assessed by measuring the activities of key antioxidant enzymes (i.e., SOD, CAT, GSH-PX) in S180 tumor cells. Treatment with ultrasound and PPIX together increased the cell damage rate to 50.91%, while treatment with ultrasound alone gave a cell damage rate to 24.24%, and PPIX alone kept this rate unchanged. Colorimetry and enzymatic chemical methods showed that the level of FFAs in cell suspension increased significantly after the treatment, while the activity of all the above enzymes decreased in tumor cells at different levels, and were associated with the generation of oxygen free radicals in cell suspension after treatment. The results indicate that oxygen free radicals may play an important role in improving the membrane lipid peroxidation, degrading membrane phospholipids to release FFAs, and decreasing the activities of the key antioxidant enzymes in cells. This biological mechanism might be involved in mediating the effects on S180 cells and resulting in the cell damage seen with SDT.  相似文献   

3.
Sonodynamic therapy (SDT) has been shown to mediate apoptosis in many experimental systems, but the detailed mechanism of this process is unclear. In this study, we aim to investigate the potential participation of the mitochondria-caspase signaling pathway in the SDT-induced apoptosis in isolated sarcoma 180 (S180) cells. The cell suspension was treated with 1.75 MHz continuous ultrasound (US) at an acoustic intensity (ISATA) of 1.4 W for 3 min in the absence or presence of 20 μg/ml hematoporphyrin (Hp). At different times after the SDT-treatment, the apoptotic cells were identified under a scanning electron microscope, and the apoptosis index (AI) was determined by flow cytometry. In addition, the mitochondrial membrane potential, permeabilization of the inner mitochondrial membrane, and translocation of apoptosis-related proteins were assessed by confocal microscopy. Simultaneously, the activation of some special apoptosis-associated proteins [caspase-9, caspase-3, polypeptide poly (ADP-ribose) polymerase (PARP), and Bax] was evaluated by western blotting. Our results indicate that the ultrasonically activated Hp can cause obvious cell apoptosis (AI, 57.66%) at 3 h after treatment, and this effect can be significantly reduced by caspase-9 inhibitor (AI, 20.76%) and the oxygen scavenger NaN3 (20.11%). However, the apoptosis induced by ultrasound alone was relatively lower (28.33%) and was not reduced by NaN3. Further, SDT caused an 82.1% reduction in the mitochondrial membrane potential and a 70.7% reduction in the permeabilization of the inner mitochondrial membrane immediately after treatment, and these two effects were obviously prevented by NaN3. In comparison with the control cells, the SDT-treated cells showed obvious cytochrome-c and Bax translocations, caspase activation, Bax expression, and PARP cleavage at 1 h after SDT-treatment. However, in the cells treated with ultrasound alone, these phenomena partially and weakly occurred 3 h after exposure. These results primarily showed that the mitochondria-caspase signaling pathway in S180 cells was activated in the US- and SDT-induced apoptosis. Moreover, Hp significantly accelerates the process of apoptosis and enhances the cytotoxic effect of ultrasonic treatment. Singlet oxygen may be responsible for the mitochondrial damage and the activation of the apoptotic signaling pathway.  相似文献   

4.
Wang X  Wang Y  Wang P  Cheng X  Liu Q 《Ultrasonics》2011,51(5):539-546

Objective

The purpose of this study was to evaluate sonodynamically induced anti-tumor effect of protoporphyrin IX (PPIX) in mice bearing hepatoma-22 (H-22) solid tumors, and the possible in vivo cell damage mechanism was also investigated.

Methods

The pharmacokinetics of PPIX was analyzed in plasma, skin, muscle and tumor of H-22 bearing mice. Tumors were irradiated with ultrasound (1.43 MHz, ISATA 3 W/cm2, 3 min) for three times at 8, 12 and 24 h after 5.0 mg/kg PPIX administration, respectively. The anti-tumor effects of sonodynamic therapy (SDT) were estimated by the tumor inhibition ratio (volume and weight). The bio-effects of SDT were evaluated by hematoxylin and eosin (H&E) staining, transmission electron microscope (TEM) observation, lipid peroxidation (LPO) measurement and anti-oxidative enzymes (glutathione peroxidase (GSH-PX), catalase (CAT) and superoxide dismutase (SOD)) assay.

Results

A significant anti-tumor effect was obtained by PPIX-mediated sonodynamic therapy (PPIX-SDT). At the fifteenth day after PPIX-SDT, the tumor growth and tumor weight inhibition ratios were 53.84% and 45.86%, respectively. In addition, the structure of tumor tissues and the anti-oxidative enzymes were obviously destroyed after SDT treatment.

Conclusions

A biochemical mechanism was involved in PPIX-SDT in vivo, and the free radicals produced by the synergistic treatment destroying the anti-oxidative system of tumor cells in vivo may play an important role in this action. Also, the thermal effect could not be excluded in inducing damage of cellular structures, like membrane disruption and chromatin condensation under current evaluation in this paper.  相似文献   

5.
Xu J  Xia X  Leung AW  Xiang J  Jiang Y  Yu H  Bai D  Li X  Xu C 《Ultrasonics》2011,51(4):480-484
Sonodynamic therapy with pyropheophorbide-a methyl ester (MPPa) presents a promising aspect in treating liver cancer. The present study aims to investigate the mitochondrial damage of liver cancer cells induced by MPPa-mediated sonodynamic action. Mouse hepatoma cell line H22 cells were incubated with MPPa (2 μM) for 20 h and then exposed to ultrasound with an intensity of 0.97 W/cm2 for 8 s. Cytotoxicity was investigated 24 h after sonodynamic action using MTT assay and light microscopy. Mitochondrial membrane potential (ΔΨm) was analyzed using flow cytometry with rhodamine 123 staining and ultrastructural changes were observed using transmission electron microscopy (TEM).The cytotoxicity of MPPa-mediated SDT on H22 cell line was 73.00 ± 3.42%, greater than ultrasound treatment alone (28.12 ± 5.19%) significantly while MPPa treatment alone had no significant effect on H22 cells. Moreover, after MPPa-mediated SDT cancer cells showed swollen mitochondria under TEM and a significant collapse of mitochondrial membrane potential. Our findings demonstrated that MPPa-mediated SDT could remarkably induce cell death of H22 cells, and highlighted that mitochondrial damage might be an important cause of cell death induced by MPPa-mediated SDT.  相似文献   

6.
Tang W  Fan W  Liu Q  Zhang J  Qin X 《Ultrasonics》2011,51(7):777-785
p53 plays a pivotal role in apoptosis. In addition, p53 is currently extensively investigated as a promising strategy for highly specific anticancer therapy in chemotherapeutics and photodynamic therapy. However, the role of p53 in the response of tumor cells to sonodynamic therapy treatment is still unclear. In this study, we aim to investigate the activation of p53 in sonodynamic therapy. Three murine tumor models with distinct aggressiveness (S180, H-22 and EAC) were treated with 1.75 MHz continuous ultrasound at an acoustic intensity (ISATA) of 1.4 W for 3 min in the presence of 20 μg/ml hematoporphyrin. The DNA fragment and nuclear damage were observed by TUNEL and single cell gel electrophoresis. Western blotting and RT-PCR were used to analyze the expression of p53, PUMA, Bax and Fas. Then we checked the translocation of p53 by confocal microscopy. DNA sequencing was used to determine the status of p53 gene in three tumor cell lines. Our results indicated that the level of p53 protein and mRNA increased significantly, and p53 activated the expression of its downstream pro-apoptosis gene PUMA, Bax and Fas in the S180 and H-22 cells. Meanwhile, p53 protein translocated onto mitochondria. In the EAC cells, expression and translocation of p53 was not found; the level of PUMA, Bax and Fas remained unaltered. The S180 cells showed most serious DNA fragment and nuclear damage with 77.43% TDNA; H-22 cells in the middle with 58.85% TDNA; whereas EAC cells appeared less nuclear material lost with just 15.82% TDNA. The results of DNA sequencing showed that the sequences of exons 5-8 of the p53 gene of S180, H-22 and EAC cells were the same with the sequences of wild-type p53 provided by NCBI. These results primarily demonstrated that: (1) p53 was activated to promote SDT-induced apoptosis through extrinsic and intrinsic signaling pathways in the S180 and H-22 cells; (2) cellular responses of different cells to SDT were distinct, the aggressive S180 cells were much more sensitive than H-22, whereas EAC cells were relatively less sensitive. The discrepancy among the cell lines may be due to different activation time of p53 protein.  相似文献   

7.
Liu Q  Wang X  Wang P  Qi H  Zhang K  Xiao L 《Ultrasonics》2006,45(1-4):56-60
The cytotoxic effect of PPIX on isolated sarcoma 180 cells induced by ultrasound was investigated. Tumor cells suspended in air-saturated PBS (pH 7.2) were exposed to ultrasound at 2.2 MHz for up to 60 s in the presence and absence of protoporphyrin IX disodium salt (PPIX). The viability of cells was determined by a trypan blue exclusion test. The rate of ultrasonically induced cell damage was increased with 40–160 μM PPIX, while no cell damage was observed with 160 μM PPIX alone. This enhancement of cell damage with PPIX was inhibited by histidine. The participation of lipid peroxidation products in the cell damage process was also investigated. Scanning electron microscope (SEM) observation of the surface of cells was performed to evaluate the morphological changes induced by ultrasonic irradiation. The results indicate the involvement of a sonochemical mechanism.  相似文献   

8.
Pan Wang 《Ultrasonics》2010,50(6):634-638
The cytotoxic effect of protoporphyrin IX disodium salt (PPIX) on isolated Ehrlich ascetic tumor (EAT) cells induced by ultrasound exposure was investigated. Tumor cells suspended in air-saturated phosphate buffer solution (PBS, pH 7.2) were exposed to ultrasound at 2.2 MHz for up to 60 s in the presence and absence of PPIX. The viability of cells was determined by a trypan blue exclusion test. The morphological changes of cells in SDT were observed by scanning electron microscope (SEM). And the sub-cellular localization of PPIX in EAT cells was detected by confocal laser scanning microscopy (CLSM). The ultrasonically-induced cell damage increased as PPIX concentration increased, while no cell damage was observed with PPIX alone. CLSM observation revealed that the fluorescence of PPIX and rhodamine 123 (mitochondrial probe) overlapped very well in the cytoplasm. The results indicate that PPIX could enhance the ultrasonically-induced cell damage and mitochondria may play an important role during sonodynamically induced cytotoxicity.  相似文献   

9.
This study is to test the sensitivities of different tumor cells to ultrasound irradiation at the frequency of 2.2 MHz for 60 s duration, and investigate the potential mechanism underlying different sensitivities. Three murine tumor models with distinct aggressiveness (S180, H-22 and EAC) were exposed to ultrasound to evaluate their sonodynamic efficiencies, and several biological parameters such as cell membrane permeability, lipid peroxidation (LPO), ultra-structure observation, intracellular reactive oxygen species (ROS) and mitochondria membrane potential (MMP) were analyzed after exposures. The results showed that cellular responses of different cells were distinct, of interest to note, the aggressive S180 cells were much more sensitive than others, whereas EAC cells were relatively more resistant to ultrasound irradiation. The direct comparisons among different types of cells indicate that the sono-sensitization seems to depend on the physiological and chemical properties of tumor cells. Perhaps sections of cell membrane became destabilized following the initial radical attack and LPO reaction, which caused S180 cells more susceptible to mechanical stresses during sonolysis. This study provides important implications for cancer therapy.  相似文献   

10.
Sonodynamic therapy (SDT), as a newly emerging and promising modality for cancer treatment, has been extensively investigated but with limited therapeutic outcome because of the absence of highly efficient sonosensitizer. Copper–cysteamine (Cu–Cy), as a new sensitizer, has been reported for oxidative therapy which can be activated with light, X‐ray, or microwave. Herein, for the first time, Cu–Cy nanoparticles are reported as new sonosensitizers for SDT on breast cancer treatment. Upon exposure of Cu–Cy nanoparticles to ultrasound, a large quantity of reactive oxygen species (ROS) are generated for cancer cell destruction with a high SDT efficiency to induce cell apoptosis and necrosis as observed in vitro. In vivo animal studies show a significant inhibition of tumor growth for the xenografts of 4T1 cancer cells with the combination of 0.75 mg kg−1 Cu–Cy and ultrasound. Overall, the preliminary results show that Cu–Cy nanoparticles can significantly augment the levels of ROS induced by ultrasound, demonstrating Cu–Cy is a new kind of efficient sonosensitzers for SDT applications. Such therapeutic platform by integrating a noninvasive, highly safe, deep‐penetration ultrasound modality. and quickly developed versatile nanosensitizers for tumor eradication will facilitate SDT future clinical translation.  相似文献   

11.
Li Y  Wang P  Zhao P  Zhu S  Wang X  Liu Q 《Ultrasonics》2012,52(4):490-496
Sonodynamic therapy (SDT) is a promising modality for cancer treatment, involving the synergistic interaction of ultrasound and some chemical compounds termed as sono-sensitizers. It has been found that SDT can lead to apoptotic cell death because of the induction of direct sonochemical and subsequent redox reactions. However, the detailed mechanisms are not clear. This study was to identify the cytotoxic effects of ultrasound-activated protoporphyrin IX (PpIX) on MDA-MB-231 cells. The fluorescence microscope was used to detect the sub-cellular localization of PpIX. Several distinct sonochemical effects were found after SDT treatment, including the decrease of cell viability, generation of intracellular ROS, the loss of mitochondrial membrane potential. The activation of some special apoptosis-associated proteins [Caspase-9, Caspase-3 and polypeptide poly (ADP-robose) polymerase] was evaluated by western blotting. The results show that PpIX mediated SDT (PpIX-SDT) treatment could obviously inhibit the proliferation of MDA-MB-231 cells, and which was significantly reduced by the pan-Caspase inhibitor z-VAD-fmk and the reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC). Further, SDT induced a conspicuous loss of mitochondrial membrane potential (MMP) and a mass of ROS accumulation in MDA-MB-231 cells at 1 h post-treatment and the SDT-treated cells showed obvious Caspase-3 and Caspase-9 activation, and PARP cleavage at 6 h after treatment. And, the general apoptosis marker-Caspase-3 activation-was also greatly relieved by NAC. These findings primarily indicate a Caspase-depended apoptosis could be induced by PpIX-SDT in MDA-MB-231 cells, and the intracellular ROS was involved during the apoptotic process.  相似文献   

12.
Sonodynamic effect of erythrosin B on sarcoma 180 cells in vitro   总被引:9,自引:0,他引:9  
The ultrasonically induced cytotoxic effect of erythrosin B (EB) on isolated sarcoma 180 cells was investigated. The tumor cells were suspended in an air-saturated phosphate buffered saline and exposed to ultrasound at 1.93 MHz in a standing-wave mode for up to 60 s in the presence and absence of EB. The rate of cell damage induction by ultrasound was enhanced by 4-5 times with 160-microM EB, while no cell damage was observed with EB alone. This enhancement was significantly inhibited by histidine. Sonochemical generation of active oxygen species in the presence of EB, measured by ESR spectroscopy, was also inhibited by histidine. These results indicate the involvement of a sonochemical mechanism.  相似文献   

13.
Sono-photodynamic therapy (SPDT) is a promising anti-cancer strategy. Briefly, SPDT combines ultrasound and light to activate sensitizers that produce mechanical, sonochemical and photochemical activities. Sinoporphyrin sodium (DVDMS) is a newly identified sensitizer that shows great potential in both sonodynamic therapy (SDT) and photodynamic therapy (PDT). In this study, we primarily evaluated the combined effects of SDT and PDT by using DVDMS on breast cancer both in vitro and in vivo. In vitro, DVDMS-SPDT elicits much serious cytotoxicity compared with either SDT or PDT alone by MTT and colony formation assays. 2′,7′-Dichlorodihydrofluo-rescein-diacetate (DCFH-DA) and dihydroethidium (DHE) staining revealed that intracellular reactive oxygen species (ROS) were significantly increased in groups given combined therapy. Terephthalic acid (TA) method and FD500-uptake assay reflected that cavitational effects and cell membrane permeability changes after ultrasound irradiation were also involved in the enhancement of combination therapy. In vivo, DVDMS-SPDT markedly inhibits the tumor volume and tumor weight growth. Hematoxylin-eosin staining and immunohistochemistry analysis show DVDMS-SPDT greatly suppressed tumor proliferation. Further, DVDMS-SPDT significantly inhibits tumor lung metastasis in the highly metastatic 4T1 mouse xenograft model, which is consistent well with the in vitro findings evaluated by transwell assay. Moreover, DVDMS-SPDT did not produces obvious effect on body weight and major organs in 4T1 xenograft model. The results suggest that by combination SDT and PDT, the sensitizer DVDMS would produce much better therapeutic effects, and DVDMS-SPDT may be a potential strategy against highly metastatic breast cancer.  相似文献   

14.
Sono-Photodynamic therapy (SPDT), a new modality for cancer treatment, is aimed at enhancing anticancer effects by the combination of sonodynamic therapy (SDT) and photodynamic therapy (PDT). In this study, we investigated the antitumor effect and possible mechanisms of Chlorin e6 (Ce6) mediated SPDT (Ce6-SPDT) on breast cancer both in vitro and in vivo. MTT assay revealed that the combined therapy markedly enhanced cell viability loss of breast cancer cell lines (MDA-MB-231, MCF-7 and 4T1) compared with SDT and PDT alone. Propidium iodide/hoechst33342 double staining reflected that 4T1 cells with apoptotic morphological characteristics were significantly increased in groups given combined therapy. Besides, the combined therapy caused obvious mitochondrial membrane potential (MMP) loss at early 1 h post SPDT treatment. The generation of intracellular reactive oxygen species (ROS) detected by flow cytometry was greatly increased in 4T1 cells treated with the combination therapy, and the loss of cell viability and MMP could be effectively rescued by pre-treatment with the ROS scavenger N-acetylcysteine (NAC). Further, Ce6-SPDT markedly inhibited the tumor growth (volume and weight) and lung metastasis in 4T1 tumor-bearing mice, but had no effect on the body weight. Hematoxylin and eosin staining revealed obvious tissue destruction with large spaces in the Ce6-SPDT groups, and TUNEL staining indicated tumor cell apoptosis after treatment. Immunohistochemistry analysis showed that the expression level of VEGF and MMP were significantly decreased in the combined groups. These results indicated that Ce6-mediated SPDT enhanced the antitumor efficacy on 4T1 cells compared with SDT and PDT alone, loss of MMP and generation of ROS might be involved. In addition, Ce6-mediated SPDT significantly inhibited tumor growth and metastasis in mouse breast cancer 4T1 xenograft model, in which MMP-9 and VEGF may play a crucial role.  相似文献   

15.
Recent advances in sonodynamic approach to cancer therapy   总被引:12,自引:0,他引:12  
Chemical agents such as porphyrins were found to be activated by ultrasound, producing significant antitumor effects. Hematoporphyrin (Hp) enhanced ultrasonically induced damage on sarcoma cells and shown a synergistic inhibitory effect on the tumor growth in combination with ultrasound at 2 MHz. Recently, other types of porphyrins such as protoporphyrin were also found to have such sonodynamic activities. Furthermore, it was found that sonochemical reactions can be greatly accelerated by superimposing the second harmonic onto the fundamental. The highest rate of iodine release from aqueous iodide was obtained at an acoustic intensity ratio between 1 MHz and 2 MHz of 1:1 while either one of the frequency components alone could not induce significant iodine release at the same total acoustic intensity. Second-harmonic superimposition in combination with sonodynamically active antitumor agents may have the potential for selective tumor treatment.  相似文献   

16.
In this study, we report evidence of the damage effects of sonodynamic therapy (SDT) on a novel intracellular target, cytoskeletal F-actin, that has great importance for cancer treatment. Ehrlich ascites carcinoma (EAC) cells suspended in PBS were exposed to ultrasound at 1.34MHz for up to 60s in the presence and absence of protoporphyrin IX (PPIX). To evaluate the polymeric state and distribution of actin filaments (AF) we employed FITC-Phalloidin staining. The percentage of cells with intact AF was decreased with 10-80muMu PPIX after ultrasonic exposure, while only few cells with disturbed F-actin were observed with 80muMu PPIX alone. The fluorescence intensity of FITC-Phalloidin labeled cells was detected by flow cytometry. The morphological changes of EAC cells were observed by scanning electron microscope (SEM). The nuclei were stained with Hoechst 33258 to determine apoptosis. Cytoskeletal F-actin and cell morphological changes were dependent on the time after SDT. Some cells suffered deformations of plasma membrane as blebs that reacted positively to FITC-Phalloidin at 2h after SDT treatment. Many of the cells showed the typically apoptotic chromatin fragmentation. The alterations were more significant 4h later. Our results showed that cytoskeletal F-actin might represent an important target for the SDT treatment and the observed effect on F-actin and the subsequent bleb formation mainly due to apoptosis formation due to the treatment.  相似文献   

17.
Xiang J  Xia X  Jiang Y  Leung AW  Wang X  Xu J  Wang P  Yu H  Bai D  Xu C 《Ultrasonics》2011,51(3):390-395

Objective

The present study aims to investigate apoptosis of ovarian cancer cells induced by methylene blue (MB)-mediated sonodynamic therapy (SDT).

Methods

The MB concentration was kept constant at 100 μM and ovarian cancer HO-8910 cells were exposed to ultrasound therapy for 5 s with an intensity of 0.46 W/cm2. The cytotoxicity was investigated 24 h after MB-mediated sonodynamic action. Apoptosis was analyzed using a flow cytometer with Annexin V-FITC and propidium iodine (PI) staining as well as fluorescence microscopy with Hoechst 33258 staining. Intracellular reactive oxygen species (ROS) level was measured by flow cytometer with 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) staining.

Results

The cytotoxicity of MB-mediated SDT on HO-8910 cells after MB-mediated SDT was significantly higher than those of other treatments including ultrasound alone, MB alone and sham treatment. Flow cytometric analysis showed a significant increase in the early and late apoptotic cell populations by MB-mediated SDT of HO-8910 cells. Nuclear condensation and increased ROS levels were also found in HO-8910 cells treated by MB-mediated SDT.

Conclusions

Our findings demonstrated that MB-mediated sonodynamic action significantly induced apoptosis of HO-8910 cells and an increase in intracellular ROS level. This indicates that apoptosis is an important mechanism of cell death induced by MB-mediated SDT. Thus, MB-mediated SDT might be a potential therapeutic strategy for combating ovarian cancer.  相似文献   

18.
Interest in using ultrasound energy in wound management and intracellular drug delivery has been growing rapidly. Development and treatment optimization of such non-diagnostic applications requires a fundamental understanding of interactions between the acoustic wave and phospholipid membranes, be they cell membranes or liposome bilayers. This work investigates the changes in membrane permeation (leakage mimicking drug release) in vitro during exposure to ultrasound applied in two frequency ranges: “conventional” (1 MHz and 1.6 MHz) therapeutic ultrasound range and low (20 kHz) frequency range. Phospholipids vesicles were used as controllable biological membrane models. The membrane properties were modified by changes in vesicle dimensions and incorporation of poly(ethylene glycol) i.e. PEGylated lipids. Egg phosphatidylcholine vesicles with 5 mol% PEG were prepared with sizes ranging from 100 nm to 1 μm. Leakage was quantified in terms of temporal fluorescence intensity changes observed during carefully controlled ultrasound ON/OFF time intervals. Custom-built transducers operating at frequencies of 1.6 MHz (focused) and 1.0 MHz (unfocused) were used, the Ispta of which were 46.9 W/cm2 and 3.0 W/cm2, respectively. A commercial 20 kHz, point-source, continuous wave transducer with an Ispta of 0.13 W/cm2 was also used for comparative purposes. Whereas complete leakage was obtained for all vesicle sizes at 20 kHz, no leakage was observed for vesicles smaller than 100 nm in diameter at 1.6 or 1.0 MHz. However, introducing leakage at the higher frequencies became feasible when larger (greater than 300 nm) vesicles were used, and the extent of leakage correlated well with vesicle sizes between 100 nm and 1 μm. This observation suggests that physico-chemical membrane properties play a crucial role in ultrasound mediated membrane permeation and that low frequency (tens of kilohertz) ultrasound exposure is more effective in introducing permeability change than the “conventional” (1 MHz) therapeutic one. The experimental data also indicate that the leakage level is controlled by the exposure time. The results of this work might be helpful to optimize acoustic field and membrane parameters for gene or drug delivery. The outcome of this work might also be useful in wound management.  相似文献   

19.
Sonodynamic therapy (SDT), or ultrasound combined with sonosensitization, is a promising approach because it is noninvasive and penetrates deeper than light does in photodynamic therapy. We examined whether bleomycin (BLM) could improve the efficacy of SDT. We performed an in vitro study using Colon-26 cells, which are derived from mouse colon cancer. SDT with BLM was significantly more cytotoxic than SDT alone both in vitro and in vivo. We also observed an ultrasound intensity-dependent cytotoxic effect of SDT with BLM. These findings suggest that SDT with BLM might provide a novel noninvasive treatment for deep-seated tumors.  相似文献   

20.
Contrast agent gas bodies attached to phagocytic monolayer cells pulsate in response to ultrasound exposure and damage the cells above thresholds, which increase in proportion to frequency. This study considered the physical basis for the thresholds and their frequency dependence. Theory for the pulsation was evaluated using empirical pulse waveforms acquired at thresholds for 1.0, 2.25, 3.5, 5.0, 7.5, and 10 MHz. For optimum-sized gas bodies, the amplitudes calculated at the thresholds were about 11% of the initial radii. At the cell membrane damage thresholds, theoretical negative shell stresses were approximately constant with frequency at about 50 MPa. This stress appears to be sufficient to induce failure of the shell, and gas body destabilization was confirmed by increases in transmission of ultrasound pulses through the monolayer and by microscopically-observed shrinkage of the gas bodies. A model of acoustic microstreaming was used to calculate the shear stress during the pulses. The maximum shear stress increased from about 1500 to 4500 Pa from 1 to 10 MHz, sufficient for the cell membrane damage. This theoretical analysis shows that both the gas body destabilization and the cell membrane damage could be expected at similar peak rarefactional pressure amplitudes, with thresholds having the observed proportionality to frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号