首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The analytical equations of the transfer matrix method are further derived for the multi-coupled vibration of flexural and longitudinal waves in a periodic dual-layered beam structure with connection branches, with full consideration given to the flexural and longitudinal motions that are tri-coupled at each connection. Measurements of mobilities at the junctions on the uni-layered beam and the cross-layered beam are made. The numerical results agree well with the experimental results at all frequencies from 10 to 2000 Hz, which verifies the theoretical methodology for the multi-coupled vibration in a finite dual-layered beam. The cross-layer energy transmission is calculated, which reveals that the transmitted longitudinal energy is enhanced not only at the longitudinal resonant modes but also at the flexural resonant modes of the connection branches due to the structural wave coupling. The flexural energy is excited by wave coupling and becomes stronger at the longitudinal resonant modes and the flexural resonant modes of the connection branches. The cross-layer vibration motions from coupled waves in the branches can be effectively controlled by the attached cantilevers with mass at the resonance modes. This method can be used to control the structure-borne sound transmission in multi-layer beam structures.  相似文献   

2.
孔径旋转频闪散斑照相法测量物体的固有频率   总被引:2,自引:1,他引:1  
陈炳泉 《光学学报》2002,22(11):358-1361
提出了一种测量物体固有频率的新方法--孔径旋转频闪散斑照相法。该方法能方便地测量振动物体的固有频率,具有精度高、全场显示、条纹可见度好等优点,给出了理论分析和实验结果。  相似文献   

3.
Silicon micro cantilevers are used as highly sensitive transducers for a wide range of physical, chemical and biochemical stimuli. Vibrating the cantilevers at higher-order resonant modes can achieve extra sensitivity, but the difficulty lies in determining exactly which modes are excited in the cantilever. This problem is exacerbated for cantilever sensors operating in liquid where the computational analysis of the resonance modes is very challenging. Using strobed interferometric microscopy, we are able to image the dynamic behavior of individual (100×500×1 μm3) cantilevers in an eight cantilever array over frequencies from 0–1 MHz. We show how some modifications to the interferometric microscope allow for the spatial visualization of 16 longitudinal modes of cantilevers working in liquid with nanometer-scale amplitudes. We also compare the shift in frequency response and reduction in quality factor for cantilevers resonating in liquid versus in air and simulations in vacuum. Because the resonant frequency spectrum is fairly complex and does not follow simple intuition, our work maps the actual behavior of cantilevers without having any specific knowledge of the sample and environment parameters and without the necessity of involved simulations and calculations.  相似文献   

4.
The atomic force microscope (AFM) is a highly successful instrument for imaging of nanometer-sized samples and measurement of pico- to nano-Newton forces acting between atoms and molecules, especially in liquid. Generally, commercial AFM cantilevers, which have a sharp tip, are used for AFM experiments. In this review, we introduce micro-fabricated AFM cantilevers and show several applications for cell biology. In manipulation of samples on a cellular scale with a force of tens to hundreds of nano-Newtons, attempts have been made to secure the formation of covalent/non-covalent linkages between the AFM probe and the sample surface. However, present chemistry-based modification protocols of cantilevers do not produce strong enough bonds. To measure the tensile strength and other mechanical properties of actin-based thin filaments in both living and semi-intact fibroblast cells, we fabricated a probe with a hooking function by focused ion beam technology and used it to capture, pull and eventually break a chosen thin filament, which was made visible through fusion with fluorescent proteins. Furthermore, we fabricated a microscoop cantilever specifically designed for pulling a microbead attached to a cell. The microscoop cantilevers can realize high-throughput measurements of cell stiffness.  相似文献   

5.
In this study, we demonstrate the increased performance in speed and sensitivity achieved by the use of small AFM cantilevers on a standard AFM system. For this, small rectangular silicon oxynitride cantilevers were utilized to arrive at faster atomic force microscopy (AFM) imaging times and more sensitive molecular recognition force spectroscopy (MRFS) experiments. The cantilevers we used had lengths between 13 and 46μm, a width of about 11μm, and a thickness between 150 and 600nm. They were coated with chromium and gold on the backside for a better laser reflection. We characterized these small cantilevers through their frequency spectrum and with electron microscopy. Due to their small size and high resonance frequency we were able to increase the imaging speed by a factor of 10 without any loss in resolution for images from several μm scansize down to the nanometer scale. This was shown on bacterial surface layers (s-layer) with tapping mode under aqueous, near physiological conditions and on nuclear membranes in contact mode in ambient environment. In addition, we showed that single molecular forces can be measured with an up to 5 times higher force sensitivity in comparison to conventional cantilevers with similar spring constants.  相似文献   

6.
As lean premixed combustion systems are more susceptible to combustion instabilities than non-premixed systems, there is an increasing demand for improved numerical design tools that can predict the occurrence of combustion instabilities with high accuracy. The inherent nonlinearities in combustion instabilities can be of crucial importance, and we here propose an approach in which the one-dimensional (1D) Navier-Stokes and scalar transport equations are solved for geometries of variable cross-section. The focus is on attached flames, and for this purpose a new phenomenological model for the unsteady heat release from a flame front is introduced. In the attached flame method (AFM) the heat release occurs over the full length of the flame. The nonlinear code with the use of the AFM approach is validated against analytical results and against an experimental study of thermoacoustic instabilities in oxy-fuel flames by Ditaranto and Hals [Combustion and Flame 146 (2006) 493-512]. The numerical simulations are in accordance with the experimental measurements and the analytical results and both the frequencies and the amplitudes of the resonant acoustic pressure modes are reproduced with good accuracy.  相似文献   

7.
An analytical solution of the vibration responses of biological specimens using atomic force microscopy (AFM), which often requires operation in a liquid, is developed. In this study, the modal superposition method is employed to analyze the vibration responses of AFM cantilevers in tapping mode (TM) operated in a liquid and in air. The hydrodynamic force exerted by the fluid on AFM cantilevers is approximated by additional mass and hydrodynamic damping. The tip–sample interaction forces were transformed into axial, distributed transversal, and bending loading, and then applied to the end region of the AFM through the tip holder. The effects of transverse stress and bending stress were adopted to solve the dynamic model. With this model, a number of simulations were carried out to investigate the relationship between the transient responses of the cantilever in a liquid and the parameters considered in nanoscale processing. The simulations show that the vibration of AFM cantilevers in a liquid has dramatically different dynamic characteristics from these of that in air. The liquid reduces the magnitude of the transversal response and reduces the cantilever resonances. Moreover, the magnitudes of response become larger with increasing intermolecular distances and smaller with decreasing tip length. The cantilever vibration amplitudes significantly depend on the damping constant and the mass proportionality constant.  相似文献   

8.
Zhang H  Zhang SY  Wang TH 《Ultrasonics》2007,47(1-4):82-89
Based on Timoshenko beam model, a theoretical model of radially polarized piezoelectric ceramic tubes is investigated. In the model, the piezoelectric effects are considered, and the shear correction factor is introduced which reveals effects of the size of the cross-section and Poisson’s ratio. Based on the model, the particular attentions are devoted to effects of the boundary conditions at two ends on flexural resonance frequencies of the piezoelectric ceramic tubes. Changing the sizes of the tubes and the mass loads at both free ends, the variations of the flexural resonance frequencies of free–free piezoelectric ceramic tubes are calculated theoretically. Besides, the flexural resonance frequencies of the piezoelectric ceramic tube cantilevers with mass loads at one free end are also investigated theoretically. To verify accuracy of the theoretical mode, the flexural resonance frequencies for different lengths of the piezoelectric ceramic tubes and different loaded masses are measured experimentally. The theoretical results agree well with the experimental measurement, which demonstrates that the model is accurate for analyzing the flexural resonance frequencies of the piezoelectric ceramic tubes with mass loads.  相似文献   

9.
The KLn dielectronic recombination processes of trapped highly charged B-like through He-like Cu ions are studied theoretically, and the theoretical results are used to analyse our previous experimental data at Heidelberg electron beam ion trap (EBIT). The theoretical resonant positions agree with the experimental resonant positions to a precision of 0.4%, in comparison with the resonant positions of those highest peaks between theory and experiment. The experimental spectra are then fitted using a formula with the theoretical resonant energies and strengths, the result shows good overall agreement between theory and experiment over a wide electron energy range. The distribution of highly charged states is obtained from the fitting parameters.  相似文献   

10.
The dependence of photoacoustic spectra on different experimental parameters was investigated by both theoretical and experimental means. The experiments were carried out with an inexpensive resonant optoacoustic system based on near-infrared laser diodes, which allowed photoacoustic and direct absorption spectra to be recorded simultaneously. The experimental observations were compared to theoretical predictions. It was also demonstrated that source-frequency (wavelength) modulation at the resonance frequency of the cell provides superior signal to noise ratio compared to amplitude modulation and eliminates background drifts and fluctuations.  相似文献   

11.
In this study, the Euler-Bernoulli beam model is used to analyze the resonant vibration of double-walled carbon nanotubes (DWCNTs) with inner and outer nanotubes of different lengths. The resonant properties of DWCNTs with different inner and outer nanotube lengths are investigated in detail using this theoretical approach. The resonant vibration is significantly affected by the vibrational modes of the DWCNTs, and by the lengths of the inner and outer nanotubes. For an inner or outer nanotube of constant length, the vibrational frequencies of the DWCNTs increase initially and then decrease as the length of another nanotube increases. A design for nanoelectromechanical devices that operate at various frequencies can be realized by controlling the length of the inner and outer nanotubes of DWCNTs. This investigation may be helpful in applications of carbon nanotubes such as high frequency oscillators, dynamic mechanical analysis and mechanical sensors.  相似文献   

12.
Retinal trauma is a serious concern for patients undergoing inner limiting membrane (ILM) peeling to correct for various vitreoretinal interface conditions. This mechanical trauma can be prevented by modifying the surface of surgical instruments to increase adhesion to the ILM. To this effect, we have studied the effects of roughness and surface charge on the adhesive properties of ILMs by utilizing layer-by-layer (LbL) films with embedded gold nanoparticles (LbL-AuNP films). LbL films were assembled on atomic force microscopy (AFM) tipless cantilevers. Topographical analysis of these films, with and without nanoparticles, showed that LbL films with nanoparticles had a higher rms roughness compared to films alone or unmodified cantilevers. Nanoparticle-modified LbL films significantly increased the adhesion forces at the cantilever-ILM interface, compared to LbL films without particles. Surprisingly, adsorption of gold nanoparticles onto the AFM cantilevers caused increases in adhesion forces greater than those measured with LbL-AuNP films. These results have important implications for the design of surface modifications for vitreoretinal surgical instruments.  相似文献   

13.
A mathematical model that determines the propagation of acoustic waves of different geometry in two-fraction mixtures of liquids with polydispersed gas bubbles of various compositions is presented. A unique dispersion relationship, which takes into account the propagation of the plane, spherical, and cylindrical perturbations in these mixtures, is derived. It is shown that the theoretical curves of the phase velocity and the damping factor agree well with the experimental data involving the resonant frequency range.  相似文献   

14.
An experimental study and theoretical modeling of the nonlinear change in refractive index of a Co2 +: ZnSe crystal at the short-pulse single-beam probing at the wavelength 1.54 μm is reported. In the experimental conditions of negligible contributions in the index non-linearity stemming from the Kerr-effect and inhomogeneous heating, the nonlinear change in refractive index in Co2 +:ZnSe is shown to be caused by the resonant Co2 + population-perturbation effect (i.e., by the Co2 + ground-state absorption saturation). The Z-scan single-beam technique and novel theoretical approach addressing the resonant nonlinear refraction in a saturable doped medium are used, respectively, for an experimental and theoretical inspection of the phenomenon. For a set of Co2 +:ZnSe samples with different concentrations of Co2 + ions at the short-pulse (200 ns) mJ-range probing, we show that the maximal nonlinear change in refractive index is about of units of 10− 4 at the chosen wavelength.  相似文献   

15.
Film bulk acoustic resonator (FBAR) with solidly mounted resonator (SMR)-type is carried out by rf magnetic sputtering. To fabricate SMR-type FBAR, alternative high and low acoustic impedance layers, Mo/Ti multilayer, are adopted as Bragg reflector deposited by dc magnetron sputtering. The influences of sputtering pressure, substrate temperature and sputtering power on the surface roughness of Bragg reflector layer are discussed. From the atom force microscopy (AFM) analysis, the surface roughness of the Bragg reflector is improved remarkably by controlling deposition conditions. Under the appropriate sputtering condition, AlN thin films with highly c-axis-preferred orientation are deposited by rf magnetron sputtering. The performance of fabricated Mo/Ti SMR shows that the electromechanical coupling coefficient is 3.89%, the series and parallel resonant frequencies appear at 2.49 and 2.53GHz, with their quality factors 134.2 and 97.6, respectively.  相似文献   

16.
Electronic speckle pattern interferometry (ESPI) is a full field, non-contact technique for measuring the surface displacement of a structure subjected to static loading or, especially, to dynamic vibration. In this article we employ an optical system called the amplitude-fluctuation ESPI with out-of-plane and in-plane measurements to investigate the vibration characteristics of piezoceramic plates. Two different configurations of piezoceramic plates, namely the rectangular and the circular plates, are discussed in detail. As compared with the film recording and optical reconstruction procedures used for holographic interferometry, the interferometric fringes of AF-ESPI are produced instantly by a video recording system. Because the clear fringe patterns will be shown only at resonant frequencies, both the resonant frequencies and the corresponding mode shapes are obtained experimentally at the same time by the proposed AF-ESPI method. Excellent quality of the interferometric fringe patterns for both the in-plane and out-of-plane vibration mode shapes is demonstrated. The resonant frequencies of the piezoceramic plates are also measured by the conventional impedance analysis. From experimental results, we find that the out-of-plane vibration modes (type A) with lower resonant frequencies cannot be measured by the impedance analysis and only the in-plane vibration modes (type B) will be shown. However, both the out-of-plane (bending) and in-plane (extensional) vibration modes of piezoceramic plates are obtained by the AF-ESPI method. Finally, the numerical finite element calculations are also performed, and the results are compared with the experimental measurements. It is shown that the numerical calculations and the experimental results agree fairly well for both the resonant frequencies and the mode shapes.  相似文献   

17.
Atomic force microscopy (AFM) is a useful tool, not only for imaging but also for quantification of normal and lateral forces exerted on the AFM tip while interacting with the surface of materials. In order to measure these forces, an accurate determination of the normal and lateral forces exerted on the AFM cantilever is necessary. To date, there is no generally accepted technique for the force calibration of AFM cantilevers. In this paper, we present a critical review of various techniques for measuring cantilever stiffness in the normal and lateral/torsional directions in order to calibrate the normal and lateral forces exerted on AFM cantilevers. The key concepts of each technique are presented, along with a discussion of their advantages and disadvantages. An understanding of the issues involved in the determination of the stiffness is needed for the proper choice and implementation of any given technique.  相似文献   

18.
This study provides two non-contact optical techniques to investigate the transverse vibration characteristics of piezoceramic rectangular plates in resonance. These methods, including the amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) and laser Doppler vibrometer (LDV), are full-field measurement for AF-ESPI and point-wise displacement measurement for LDV, respectively. The edges of these piezoceramic rectangular plates may either be fixed or free. Both resonant frequencies and mode shapes of vibrating piezoceramic plates can be obtained simultaneously by AF-ESPI. Excellent quality of the interferometric fringe patterns for the mode shapes is obtained. In the LDV system, a built-in dynamic signal analyzer (DSA) composed of DSA software and a plug-in waveform generator board can provide the piezoceramic plates with the swept-sine excitation signal, whose gain at corresponding frequencies is analyzed by the DSA software. The peaks appeared in the frequency response curve are resonant frequencies. In addition to these optical methods, the numerical computation based on the finite element analysis is used to verify the experimental results. Good agreements of the mode shapes and resonant frequencies are obtained for experimental and numerical results.  相似文献   

19.
Coupling effect in spiral-shaped metamaterials composed of four half rings at different sizes is investigated to achieve tunability in THz range. This novel spiral-shaped structure was fabricated on flexible substrate with laser micro-lens array (MLA) lithography and measured by THz time domain spectroscopy (THz-TDS). The experimental results suggest that mutual capacitance and inductance coupling in the spiral-shaped structure would result in frequency shifts of the four resonances. The observed shifting trends of the four resonant frequencies are in good agreement with simulation and are further explained by the electric field distribution. By varying the gap sizes among the half rings, four resonant frequencies can be tuned flexibly. Such a spiral-shaped design has potential applications in multi-band tunable THz MEMS devices.  相似文献   

20.
The study of acoustic metamaterials, also known as locally resonant sonic materials, has recently focused on the topic of underwater sound absorption. The high absorption occurs only within a narrow frequency band around the locally resonant frequency. Nevertheless, this problem can be addressed through a combination of several acoustic metamaterial layers that have different resonant frequencies. In this paper, an optimization scheme, a genetic and a general nonlinear constrained algorithm, is utilized to enhance the low-frequency underwater sound absorption of an acoustic metamaterial slab with several layers. Both the physical and structural parameters of the acoustic metamaterial slab are optimized to enlarge the absorption band. In addition, the sound absorption mechanism of the acoustic metamaterial slab is also analyzed. The result shows that each layer is found to oscillate as a nearly independent unit at its corresponding resonant frequency. The theoretical and experimental results both demonstrate that the optimized metamaterial slab can achieve a broadband (800–2500 Hz) absorption of underwater sound, which is a helpful guidance on the design of anechoic coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号