首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
We give a brief review on the formation and the calculation of black hole shadows. Firstly, we introduce the concept of a black hole shadow and the current works on a variety of black hole shadows. Secondly, we present the main methods of calculating photon sphere radius and shadow radius, and then explain how the photon sphere affects the boundary of black hole shadows. We review the analytical calculation for black hole shadows which have analytic expressions for shadow boundary due to the integrable photon motion system. And we introduce the fundamental photon orbits which can explain the patterns of black hole shadow shape. Finally, we review the numerical calculation of black hole shadows with the backward ray-tracing method and introduce some chaotic black hole shadows with self-similar fractal structures. Since the gravitational waves from the merger of binary black holes have been detected, we introduce a couple of shadows of binary black holes, which all have eyebrowlike shadows around the main shadows with the fractal structures. We discuss the invariant phase space structures of the photon motion system in black hole space-time, and explain the formation of black hole shadow is dominated by the invariant manifolds of certain Lyapunov orbits near the fixed points.  相似文献   

2.
In this paper, we have studied phantom energy accretion of prefect fluid onto the Schwarzschild AdS black hole with topological defect. We have obtained critical point during the accretion of fluid on the black hole where the speed of flow is equal speed of sound (Sharif and Abbas in Phantom accretion onto the Schwarzschild de-Sitter black hole, 2011, [gr-qc]). The critical velocities have been computed so that the speed of fluid into the black hole is less than speed of sound. Finally, we have found that the critical point is near the black hole horizon.  相似文献   

3.
In this paper we calculate the center-of-mass energy of two colliding test particles near the rotating and non-rotating Horava–Lifshitz black hole. For the case of a slowly rotating KS solution of Horava–Lifshitz black hole we compare our results with the case of Kerr black holes. We confirm the limited value of the center-of-mass energy for static black holes and unlimited value of the center-of-mass energy for rotating black holes. Numerically, we discuss temperature dependence of the center-of-mass energy on the black hole horizon. We obtain the critical angular momentum of particles. In this limit the center-of-mass energy of two colliding particles in the neighborhood of the rotating Horava–Lifshitz black hole could be arbitrarily high. We found appropriate conditions where the critical angular momentum could have an orbit outside the horizon. Finally, we obtain the center-of-mass energy corresponding to this circle orbit.  相似文献   

4.
We find a new black hole in three-dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare the thermodynamics of this black hole with that of a non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein–Hawking entropy.  相似文献   

5.
In the classical relativistic regime, the accretion of phantom-like dark energy onto a stationary black hole reduces the mass of the black hole. We have investigated the accretion of phantom energy onto a stationary charged black hole and have determined the condition under which this accretion is possible. This condition restricts the mass-to-charge ratio in a narrow range. This condition also challenges the validity of the cosmic-censorship conjecture since a naked singularity is eventually produced due to accretion of phantom energy onto black hole.  相似文献   

6.
The black hole information problem provides important clues for trying to piece together a quantum theory of gravity. Discussions on this topic have generally assumed that in a consistent theory of gravity and quantum mechanics, quantum theory is unmodified. In this review, we discuss the black hole information problem in the context of generalisations of quantum theory. In this preliminary exploration, we examine black holes in the setting of generalised probabilistic theories, in which quantum theory and classical probability theory are special cases. We are able to calculate the time it takes information to escape a black hole, assuming that information is preserved. In quantum mechanics, information should escape pure state black holes after half the Hawking photons have been emitted, but we find that this get’s modified in generalisations of quantum mechanics. Likewise the black-hole mirror result of Hayden and Preskill, that information from entangled black holes can escape quickly, also get’s modified. We find that although information exits the black hole as predicted by quantum theory, it is fairly generic that it fails to appear outside the black hole at this point—something impossible in quantum theory due to the no-hiding theorem. The information is neither inside the black hole, nor outside it, but is delocalised.  相似文献   

7.
In this work, we have studied accretion of the dark energies in new variable modified Chaplygin gas (NVMCG) and generalized cosmic Chaplygin gas (GCCG) models onto Schwarzschild and Kerr?CNewman black holes. We find the expression of the critical four velocity component which gradually decreases for the fluid flow towards the Schwarzschild as well as the Kerr?CNewman black hole. We also find the expression for the change of mass of the black hole in both cases. For the Kerr?CNewman black hole, which is rotating and charged, we calculate the specific angular momentum and total angular momentum. We showed that in both cases, due to accretion of dark energy, the mass of the black hole increases and angular momentum increases in the case of a Kerr?CNewman black hole.  相似文献   

8.
In this Letter,we examine the phantom energy accretion onto a Kehagias-Sfetsos black hole in Horava-Lifshitz gravity.To discuss the accretion process onto the black hole,the equations of phantom flow near the black hole have been derived.It is found that mass of the black hole decreases because of phantom accretion.We discuss the conditions for critical accretion.Graphically,it has been found that the critical accretion phenomena is possible for different values of parameters.The results for the Schwarzschild black hole can be recovered in the limiting case.  相似文献   

9.
In this paper, we use semi-classical tunneling approach to calculate the quantum corrections to the Hawking temperature as well as entropy of the Kehagias-Sftesos asymptotically flat black hole solution and charged regular black hole with Fermi-Dirac distribution. For this purpose, we apply the first law of black hole thermodynamics to investigate the semi-classical entropy of both black holes having mass as well as charge or coupling constant. For both black holes, the entropy corrections contain the logarithmic term as a leading order correction term. For Kehagias-Sftesos asymptotically flat black hole, the semi-classical Hawking temperature and black hole entropy will behave asymptotically by considering the vanishing coupling constant b = 0. We have obtained the same analysis for the corrected thermodynamical quantities for this BH. For charged regular black hole with Fermi-Dirac distribution, if we neglect the charged effects in our analysis, i.e., q = 0, then these corrections approximately leads to the Schwarzschild black hole which is already given in the literature.  相似文献   

10.
In this study, we obtained an exact high dimensional anti-de Sitter (AdS) black hole solution in Einstein-bumblebee gravity theory. This AdS-like black hole can only exist with a linear functional potential of the bumblebee field. We found that the Smarr formula and the first law of black hole thermodynamics can still be constructed in this Lorentz symmetry breaking black hole spacetime, but the conceptions of the black hole horizon area/entropy and the volume inside the horizon should be renewed due to its anisotropy. We also found that two types of phase transition exist: small-large black hole phase transition and Hawking-Page phase transition, like those of the Schwarzschild AdS black hole. After Lorentz symmetry breaking, the black hole mass at the divergent point of heat capacity becomes small, and the Gibbs free energy of the meta-stable large black hole is also smaller, showing that the large stable black hole can be more easily formed.  相似文献   

11.
We have studied here black hole entropy in the framework of quantum geometry. It is pointed out that the black hole radiation consistent with Hawking spectrum can be realized as an effect of quantum geometry using a dynamical formalism for diffeomorphism invariance which envisages a discretized unit of time in the Planck scale. This formalism suggests that torsion acts within a quantized area unit (area bit) associated with a loop and this eventually forbids the Hamiltonian constraint to be satisfied for a finite loop size. We assign a spin with torsion in each area bit and entanglement entropy of a black hole is computed in terms of the entanglement entropy of this spin system. We have derived the Bekenstein-Hawking entropy along with a logarithmic correction term with a specific coefficient. Also we have shown that the Bekenstein-Hawking entropy can be formulated in terms of the Noether charge associated with a diffeomorphism invariant Lagrangian.  相似文献   

12.
We revisit in detail the paradox of black hole information loss due to Hawking radiation as tunneling. We compute the amount of information encoded in correlations among Hawking radiations for a variety of black holes, including the Schwarzchild black hole, the Reissner–Nordström black hole, the Kerr black hole, and the Kerr–Newman black hole. The special case of tunneling through a quantum horizon is also considered. Within a phenomenological treatment based on the accepted emission probability spectrum from a black hole, we find that information is leaked out hidden in the correlations of Hawking radiation. The recovery of this previously unaccounted for information helps to conserve the total entropy of a system composed of a black hole plus its radiations. We thus conclude, irrespective of the microscopic picture for black hole collapsing, the associated radiation process: Hawking radiation as tunneling, is consistent with unitarity as required by quantum mechanics.  相似文献   

13.
In this work we consider a new proposed regular black hole and study statistics of this black hole. We calculate partition function and related quantities which determine statistics of this black hole. We confirm that the microscopic entropy coincides with BH entropy.  相似文献   

14.
The Vaidya-Einstein-Kerr (VEK) black hole which represents the spacetime of the Kerr black hole in a non-vacuum, asymptotically non-flat background is investigated. The energy-momentum tensor corresponding to this spacetime satisfies reasonable energy conditions. We study several properties of this black hole and compare and contrast them with those of the Kerr black hole. We investigate the effect of the background on the geometry of the event horizon by computing the equatorial and polar circumferences and determining the oblateness of the horizon. We find that the surface area of the VEK black hole gets nontrivially coupled to rotation in sharp contrast to the Kerr case. We show that the angular velocity of the VEK horizon goes up significantly as the background influence increases. By using the `equatorial tangential velocity' of the VEK horizon we classify the horizon and define the `limiting black hole' a generalization that contains the extreme Kerr black hole as a special case. Finally we investigate the Gaussian curvature and establish conditions for global embedding of the VEK black hole in Euclidean space.  相似文献   

15.
Ashoke Sen 《Nuclear Physics B》1995,440(3):421-440
We construct the general electrically charged, rotating black hole solution in the heterotic string theory compactified on a six-dimensional torus and study its classical properties. This black hole is characterized by its mass, angular momentum, and a 28-dimensional electric charge vector. We recover the axion-dilaton black holes and Kaluza-Klein black holes for special values of the charge vector. For a generic black hole of this kind, the 28-dimensional magnetic dipole moment vector is not proportional to the electric charge vector, and we need two different gyromagnetic ratios for specifying the relation between these two vectors. We also give an algorithm for constructing a 58 parameter rotating dyonic black hole solution in this theory, characterized by its mass, angular momentum, a 28-dimensional electric charge vector and a 28-dimensional magnetic charge vector. This is the most general asymptotically flat black hole solution in this theory consistent with the no-hair theorem.  相似文献   

16.
We have studied quasinormal modes of scalar perturbations of a black hole in massive gravity. The parameters of the theory, such as the mass of the black hole, the scalar charge of the black hole and the spherical harmonic index is varied to see how the corresponding quasinormal frequencies change. We have also studied the massive scalar field perturbations. Most of the work is done using WKB approach while sections are devoted to compute quasinormal modes via the unstable null geodesics approach and the Pöschl–Teller approximation. Comparisons are done with the Schwarzschild black hole.  相似文献   

17.
We present an exact three-dimensional massive Kiselev AdS black hole solution. This Kiselev black hole is neither perfectly fluid, nor is it the quintessential solution, but the BTZ black hole modified by the anisotropic matter. This black hole possesses an essential singularity at its radial origin and a single horizon whose radius will increase monotonically when the parameter of the anisotropic matter field ω decreases. We calculate all thermodynamic quantities and find that the first law of thermodynamics of this massive Kiselev AdS black hole can be protected, while the consistent Smarr formula is only held in the extended thermodynamic phase space. After examining the sign of free energy, we conclude that there is no Hawking-Page transition since the massive Kiselev AdS black hole phase is always thermodynamically favored. Moreover, we study the phase transition between the Kiselev AdS black hole and BTZ black hole by considering the matchings for their temperature. We find that the Kiselev AdS black hole is still a thermodynamically more preferred phase, because it always has a smaller amount of free energy than the BTZ black hole, which seems to indicate that the anisotropic matter field may emerge naturally in BTZ black hole spacetime under some thermal fluctuations. We also show a first order phase transition between the Kiselev AdS black hole phase with -1w -1/2 and the black hole phase with -1/2w0. As the Kiselev AdS black hole has some notable features on the phase transition of black holes in three dimensions, it provides important clues to further investigate these both surprising and similar behaviors in four and higher dimensions.  相似文献   

18.
We show that an extremal Kerr black hole, appropriately lifted to M theory, can be transformed to a Kaluza-Klein black hole in M theory, or a D0-D6 charged black hole in string theory. Since all the microstates of the latter have recently been identified, one can exactly reproduce the entropy of an extremal Kerr black hole. We also show that the topology of the event horizon is not well defined in M theory.  相似文献   

19.
In this paper, we have studied the accretion of phantom energy on a (2 + 1)-dimensional stationary Banados–Teitelboim–Zanelli (BTZ) black hole. It has already been shown by Babichev et al. that for the accretion of phantom energy onto a Schwarzschild black hole, the mass of black hole would decrease and the rate of change of mass would be dependent on the mass of the black hole. However, in the case of (2 + 1)-dimensional BTZ black hole, the mass evolution due to phantom accretion is independent of the mass of the black hole and is dependent only on the pressure and density of the phantom energy. We also study the generalized second law of thermodynamics at the event horizon and construct a condition that puts an lower bound on the pressure of the phantom energy.  相似文献   

20.
We formulate the lensing effects of a spherically symmetric electrically charged black hole using thin lens equations. The charged black hole leads to three images and could lead to three Einstein rings provided the parameters such as the mass, charge and the distances satisfy certain constraints. We have computed the exact positions of images and magnification properties for a super-massive black hole with electric charge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号