首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present an exact three-dimensional massive Kiselev AdS black hole solution. This Kiselev black hole is neither perfectly fluid, nor is it the quintessential solution, but the BTZ black hole modified by the anisotropic matter. This black hole possesses an essential singularity at its radial origin and a single horizon whose radius will increase monotonically when the parameter of the anisotropic matter field ω decreases. We calculate all thermodynamic quantities and find that the first law of thermodynamics of this massive Kiselev AdS black hole can be protected, while the consistent Smarr formula is only held in the extended thermodynamic phase space. After examining the sign of free energy, we conclude that there is no Hawking-Page transition since the massive Kiselev AdS black hole phase is always thermodynamically favored. Moreover, we study the phase transition between the Kiselev AdS black hole and BTZ black hole by considering the matchings for their temperature. We find that the Kiselev AdS black hole is still a thermodynamically more preferred phase, because it always has a smaller amount of free energy than the BTZ black hole, which seems to indicate that the anisotropic matter field may emerge naturally in BTZ black hole spacetime under some thermal fluctuations. We also show a first order phase transition between the Kiselev AdS black hole phase with -1w -1/2 and the black hole phase with -1/2w0. As the Kiselev AdS black hole has some notable features on the phase transition of black holes in three dimensions, it provides important clues to further investigate these both surprising and similar behaviors in four and higher dimensions.  相似文献   

2.
彭严  邓方安  刘国华  杨凯凡 《物理学报》2015,64(15):157401-157401
本文研究了含Stückelberg机理的黑洞全息超导模型. 通过选取标量场新的高阶修正形式, 建立了新的Stückelberg黑洞全息超导模型. 通过研究模型参数对标量场凝聚的影响, 发现了当模型参数大于临界值时, 高阶修正可以引起一阶相变. 同时本文还考查了反作用对临界值的影响.  相似文献   

3.
In these notes we present a summary of existing ideas about phase transitions of black hole spacetimes in semiclassical gravity and offer some thoughts on three possible scenarios or mechanisms by which these transitions could take place. We begin with a review of the thermodynamics of a black hole system and emphasize that the phase transition is driven by the large entropy of the black hole horizon. Our first theme is illustrated by a quantum atomic black hole system, generalizing to finite-temperature a model originally offered by Bekenstein. In this equilibrium atomic model, the black hole phase transition is realized as the abrupt excitation of a high energy state, suggesting analogies with the study of two-level atoms. Our second theme argues that the black hole system shares similarities with the defect-mediated Kosterlitz–Thouless transition in condensed matter. These similarities suggest that the black hole phase transition may be more fully understood by focusing upon the dynamics of black holes and white holes, the spacetime analogy of vortex and antivortex topological defects. Finally, we compare the black hole phase transition to another transition driven by an (exponentially) increasing density of states, the Hagedorn transition first found in hadron physics in the context of dual models or the old string theory. In modern string theory the Hagedorn transition is linked by the Maldacena conjecture to the Hawking–Page black hole phase transition in Anti-de Sitter (AdS) space, as observed by Witten. Thus, the dynamics of the Hagedorn transition may yield insight into the dynamics of the black hole phase transition. We argue that characteristics of the Hagedorn transition are already contained within the dynamics of classical string systems. Our third theme points to carrying out a full nonperturbative and nonequilibrium analysis of the large N behavior of classical SU(N) gauge theories to understand its Hagadorn transition. By invoking the Maldacena conjecture we can then gain valuable insight into black hole phase transitions in AdS space.  相似文献   

4.
We study the basic holographic insulator and superconductor phase transition in the AdS soliton background by generalizing the spontaneous breaking of a global U(1)U(1) symmetry to occur via Stückelberg mechanism. We construct the soliton solutions with backreaction and examine the effects of the backreaction on the condensation of the scalar hair in the generalized Stückelberg Lagrangian. We disclose rich physics in various phase transitions. In addition to the AdS soliton configuration, we also examine the property of the phase transition in the AdS black hole background.  相似文献   

5.
We discuss the P-V criticality and phase transition in the extended phase space of Born-Infeld AdS (BIAdS) black hole surrounded by quintessence dark energy, where the cosmological constant ∧ is identified with the thermodynamical pressure P. Comparing with Van der Waals(VdW)-like SBH/LBH phase transition of Born-Infeld AdS (BI-AdS) black hole, we find that the BI-AdS black hole surrounded by quintessence dark energy possesses lower critical temperature because of parameter a > 0, even disappears since the parameter a taking enough large values leads to Tc ≤ 0. Moreover, the interesting thermodynamic phenomenon of reentrant phase transition (RPT) are also observed, and the quintessence dark energy plays a similar role in this RPT.  相似文献   

6.
7.
In this paper, we visit the thermodynamic criticality and thermodynamic curvature of the charged AdS black hole in a new phase space. It is shown that when the square of the total charge of the charged black hole is considered as a thermodynamic quantity, the charged AdS black hole also admits a van der Waals-type critical behavior without the help of thermodynamic pressure and thermodynamic volume. Based on this, we study the fine phase structures of the charged AdS black hole with fixed AdS background in the new framework. On the one hand, we give the phase diagram structures of the charged AdS black hole accurately and analytically, which fills up the gap in dealing with the phase transition of the charged AdS black holes by taking the square of the charge as a thermodynamic quantity. On the other hand, we analyse the thermodynamic curvature of the black hole in two coordinate spaces. The thermodynamic curvatures obtained in two different coordinate spaces are equivalent to each other and are also positive. Based on an empirical conclusion under the framework of thermodynamic geometry, we speculate that when the square of charge is treated as an independent thermodynamic quantity, the charged AdS black hole is likely to present a repulsive between its molecules. More importantly, based on the thermodynamic curvature, we obtain a universal exponent at the critical point of phase transition.  相似文献   

8.
The Pv criticality and phase transition in the extended phase space of a noncommutative geometry inspired Reissner–Nordström (RN) black hole in Anti-de Sitter (AdS) space-time are studied, where the cosmological constant appears as a dynamical pressure and its conjugate quantity is thermodynamic volume of the black hole. It is found that the Pv criticality and the small black hole/large black hole phase transition appear for the noncommutative RN-AdS black hole. Numerical calculations indicate that the noncommutative parameter affects the phase transition as well as the critical temperature, horizon radius, pressure and ratio. The critical ratio is no longer universal, which is different from the result in the van de Waals liquid–gas system. The nature of phase transition at the critical point is also discussed. Especially, for the noncommutative geometry inspired RN-AdS black hole, a new thermodynamic quantity \(\varPsi \) conjugate to the noncommutative parameter \(\theta \) has to be defined further, which is required for consistency of both the first law of thermodynamics and the corresponding Smarr relation.  相似文献   

9.
Considering the negative cosmological constant of an anti-de Sitter (AdS) background as a positive thermodynamic pressure in the extended phase space, we investigate the Pυ critical behavior and of the cooling–heating phase transition of the regular Hayward-AdS (HAdS) black hole (BH), and compare the difference of some thermodynamic processes in both the HAdS BH and the Bardeen-AdS (BAdS) BH. We found that the phase transition of the BAdS BH tends to be more the van der Waals (vdW) phase transition. For the cooling–heating phase transition, we obtained the inversion curves of the HAdS BH are always higher than the BAdS BH under the same pressure and magnetic charge. We also compare the smallest existence mass, the zero-temperature remnant, and the critical magnetic charge for these two BHs. The results suggested that the inner horizon and the outer horizon of the Hayward BH are easier to merge, and the singularity is easier to expose.  相似文献   

10.
Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein-Hawking black hole entropy. In particular, many researchers have expressed a vested interest in the coefficient of the logarithmic term of the black hole entropy correction term. In this paper, based on the correction to black hole thermodynamic quantity due to the generalized uncertainty principle, we calculate the partition function by energy spectrum obtained using tunneling effect. Furthermore we derive the black hole entropy. In the expression, we not only consider the generalized uncertainty principle but also consider the departure of black hole radiation spectrum from pure thermal spectrum. According to criterion law of thermodynamic systems phase transition, we discuss the phase transition of AdS black hole and derive that the phase transition of AdS black hole is a secondary one.  相似文献   

11.
We present here a static solution for a large black hole (whose horizon radius is larger than the AdS radius) located on the brane in RSII model. According to some arguments based on the AdS/CFT conjecture, a solution for the black hole located on the brane in RSII model must encode quantum gravitational effects and therefore cannot be static. We demonstrated that a static solution can be found if the bulk is not empty. The stress energy tensor of the matter distribution in the bulk for the solution we found is physical (i.e. it is non-singular with the energy density and pressure not violating any energy conditions). The scale of the solution is given by a parameter “a”. For large values of the parameter “a” we have a limit of an almost empty AdS bulk. It is interesting that the solution cannot be transformed into the Schwarzschild-like form and does not reduce to the Schwarzschild solution on the brane. We also present two other related static solutions. At the end, we discuss why the numerical methods failed so far in finding static solutions in this context, including the solutions we found analytically here.  相似文献   

12.
13.
We formulate and solve the problem of spherically symmetric, steady state, adiabatic accretion onto a Schwarzschild-like black hole obtained recently. We derive the general analytic expressions for the critical points, the critical velocity, the critical speed of sound, and subsequently the mass accretion rate. The case for polytropic gas is discussed in detail. We find the parameter characterizing the breaking of Lorentz symmetry will slow down the mass accretion rate, while has no effect on the gas compression and the temperature profile below the critical radius and at the event horizon.  相似文献   

14.
In this paper we consider five dimensional AdS Reissner-Nordstrom black hole and calculate thermodynamical variables such as entropy, specific heat and free energy. In that case we can obtain stability conditions of the black hole and fix black hole charge and mass for phase transition.  相似文献   

15.
From black hole perturbation theory, quasi-normal modes (QNMs) in spherically symmetric AdS black hole spacetimes are usually studied with the Horowitz and Hubeny methods [1] by imposing the Dirichlet or vanishing energy flux boundary conditions. This method was constructed using the scalar perturbation case and box-like effective potentials, where the radial equation tends to go to infinity when the radial coordinate approaches infinity. These QNMs can be realized as a different set of solutions from those obtained by the barrier-like effective potentials. However, in some cases the existence of barrier-like effective potentials in AdS black hole spacetimes can be found. In these cases this means that we would obtain a new (original) set of QNMs by the purely ingoing and purely outgoing boundary conditions when the radial coordinate goes to the event horizon and infinity, respectively. Obtaining this set of QNMs in AdS black hole cases is the main focus of this paper.  相似文献   

16.
Recent developments point to a breakdown in the generalized second law of thermodynamics for theories with Lorentz symmetry violation. It appears possible to construct a perpetual motion machine of the second kind in such theories, using a black hole to catalyze the conversion of heat to work. Here we describe and extend the arguments leading to that conclusion. We suggest the inference that local Lorentz symmetry may be an emergent property of the macroscopic world with origins in a microscopic second law of causal horizon thermodynamics.  相似文献   

17.
We apply the null-geodesic method to investigate tunneling radiation of charged and magnetized massive particles from Taub-NUT-Reissner-Nordström black holes endowed with electric as well as magnetic charges in Anti-de Sitter (AdS) spaces. The geodesics of charged massive particle tunneling from the black hole is not lightlike, but can be determined by the phase velocity. We find that the tunneling rate is related to the difference of Bekenstein-Hawking entropies of the black hole before and after the emission of particles. The entropy differs from just a quarter area at the horizon of black holes with NUT parameter. The emission spectrum is not precisely thermal anymore and the deviation from the precisely thermal spectrum can bring some information out, which can be treated as an explanation to the information loss paradox. The result can also be treated as a quantum-corrected radiation temperature, which is dependent on the black hole background and the radiation particle’s energy and charges.  相似文献   

18.
In this paper we discuss the black hole–string transition of the small Schwarzschild black hole of AdS 5×S5 using the AdS/CFT correspondence at finite temperature. The finite temperature gauge theory effective action, at weak and strong coupling, can be expressed entirely in terms of constant Polyakov lines which are SU(N) matrices. In showing this we have taken into account that there are no Nambu–Goldstone modes associated with the fact that the 10-dimensional black hole solution sits at a point in S5. We show that the phase of the gauge theory in which the eigenvalue spectrum has a gap corresponds to supergravity saddle points in the bulk theory. We identify the third order N=∞ phase transition with the black hole–string transition. This singularity can be resolved using a double scaling limit in the transition region where the large N expansion is organized in terms of powers of N-2/3. The N=∞ transition now becomes a smooth crossover in terms of a renormalized string coupling constant, reflecting the physics of large but finite N. Multiply wound Polyakov lines condense in the crossover region. We also discuss the implications of our results for the resolution of the singularity of the lorenztian section of the small Schwarzschild black hole.  相似文献   

19.
By using the method of quantum statistics, we directly derive the partition functions of bosonic and fermionic field in Kaluza—Klein black hole with axial symmetry. Then via the improved brick-wall method, membrane model, we obtain that the entropy of bosonic and fermionic field in black hole is proportional to the area of horizon. In our result, the stripped term and the divergent logarithmic term no longer exist. The problem that the state density is divergent around the horizon doesn't exist either. We also give the influence of the spining degeneracy of particles on the entropy of black hole. We offer a new, simple, and direct way of calculating the entropy of different complicated black holes.  相似文献   

20.
In this paper, we consider charged accelerating AdS black holes with nonlinear electromagnetic source. The metric chosen by us is of a regular black hole, which shows regular nature at poles and a conical effect, which corresponds to a cosmic string. In such a space time construction of the Lagrangian for a charged particle is done. Cyclic coordinates as well as the corresponding symmetry generators, i.e., the Killing vectors are found. Conservation laws corresponding to the symmetries are counted. Euler-Lagrange equations are found. The orbit is mainly taken to be a circular one and effective potential is found. The minimum velocity obtained by a particle to escape from innermost stable circular orbit is found. The value of this escape velocity is plotted with respect to the radius of the event horizon of the central black hole for different parametric values. The nature of the escape velocity is studied when the central object is working with gravitational force and charge simultaneously. Effective potential and effective force are also plotted. The range of radius of event horizon for which the effective force turns to be positive is found out. A pathway of future studies of accretion disc around such black holes is made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号