首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although it has been shown that the phase of the MR signal from the brain is particularly prone to variation due to respiration, the overall physiological information contained in phase time series is not well understood. Here, we explore the different physiological processes contributing to the phase time series noise, identify their spatiotemporal characteristics and examine their relationship to BOLD-related and non-BOLD-related physiological noise in the magnitude time series. This was performed by manipulating the contribution of physiological noise to the total signal variance by modulating the TE and voxel volume, and using a short TR in order to adequately sample physiological signal fluctuations. The phase and magnitude signals were compared both before and after removal of signal fluctuations at the primary respiratory and cardiac frequencies with RETROICOR. We found that the temporal phase noise increased with TE at a faster rate than predicted by 1/TSNR as a result of physiological noise. As suggested by previous studies, the primary contributor to phase physiological noise was respiration-related effects which were manifested at a large scale (>1 cm). Notably, RETROICOR removed respiration-related large-scale artifacts and this resulted in considerable improvements in the temporal phase stability (7–90%). Physiological noise in the magnitude time series after RETROICOR consisted of low-frequency BOLD-related fluctuations (<0.13 Hz) localized to gray matter and the vasculature, and fluctuations in the vasculature correlated with slow (<0.1 Hz) variations in respiration volume and cardiac rhythm. Physiological noise in the phase signal after RETROICOR also occurred in frequencies below 0.13 Hz and was consistent with (1) residual large-scale magneto-mechanical effects correlated with slow variations in respiration volume and cardiac rhythm over time, and (2) local scale (<1 cm) effects localized in gray matter and vasculature most likely due to vascular dephasing mediated by a BOLD susceptibility change. While BOLD-related magnitude noise exhibited a TE dependence similar to BOLD, the ‘BOLD-related’ noise in the phase data increased with increasing TE and thus caused the overall phase noise to increase at a faster rate with TE than predicted by 1/TSNR. Interestingly, the spatial specificity of this effect was more evident for the higher resolution phase data, as opposed to the magnitude data, suggesting that at a higher spatial resolution the phase signal may contain more information on physiological processes than the magnitude signal.  相似文献   

2.
Functional magnetic resonance imaging (fMRI) technique with blood oxygenation level dependent (BOLD) contrast is a powerful tool for noninvasive mapping of brain function under task and resting states. The removal of cardiac- and respiration-induced physiological noise in fMRI data has been a significant challenge as fMRI studies seek to achieve higher spatial resolutions and characterize more subtle neuronal changes. The low temporal sampling rate of most multi-slice fMRI experiments often causes aliasing of physiological noise into the frequency range of BOLD activation signal. In addition, changes of heartbeat and respiration patterns also generate physiological fluctuations that have similar frequencies with BOLD activation. Most existing physiological noise-removal methods either place restrictive limitations on image acquisition or utilize filtering or regression based post-processing algorithms, which cannot distinguish the frequency-overlapping BOLD activation and the physiological noise. In this work, we address the challenge of physiological noise removal via the kernel machine technique, where a nonlinear kernel machine technique, kernel principal component analysis, is used with a specifically identified kernel function to differentiate BOLD signal from the physiological noise of the frequency. The proposed method was evaluated in human fMRI data acquired from multiple task-related and resting state fMRI experiments. A comparison study was also performed with an existing adaptive filtering method. The results indicate that the proposed method can effectively identify and reduce the physiological noise in fMRI data. The comparison study shows that the proposed method can provide comparable or better noise removal performance than the adaptive filtering approach.  相似文献   

3.
Functional magnetic resonance imaging techniques using the blood oxygenation level-dependent (BOLD) contrast are widely used to map human brain function by relating local hemodynamic responses to neuronal stimuli compared to control conditions. There is increasing interest in spontaneous cerebral BOLD fluctuations that are prominent in the low-frequency range (<0.1 Hz) and show intriguing spatio-temporal correlations in functional networks. The nature of these signal fluctuations remains unclear, but there is accumulating evidence for a neural basis opening exciting new avenues to study human brain function and its connectivity at rest. Moreover, an increasing number of patient studies report disease-dependent variation in the amplitude and spatial coherence of low-frequency BOLD fluctuations (LFBF) that may afford greater diagnostic sensitivity and easier clinical applicability than standard fMRI. The main disadvantage of this emerging tool relates to physiological (respiratory, cardiac and vasomotion) and motion confounds that are challenging to disentangle requiring thorough preprocessing. Technical aspects of functional connectivity fMRI analysis and the neuroscientific potential of spontaneous LFBF in the default mode and other resting-state networks have been recently reviewed. This review will give an update on the current knowledge of the nature of LFBF, their relation to physiological confounds and potential for clinical diagnostic and pharmacological studies.  相似文献   

4.
Functional connectivity measures based upon low-frequency blood-oxygenation-level-dependent functional magnetic resonance imaging (BOLD fMRI) signal fluctuations have become a widely used tool for investigating spontaneous brain activity in humans. Still unknown, however, is the precise relationship between neural activity, the hemodynamic response and fluctuations in the MRI signal. Recent work from several groups had shown that correlated low-frequency fluctuations in the BOLD signal can be detected in the anesthetized rat — a first step toward elucidating this relationship. Building on this preliminary work, through this study, we demonstrate that functional connectivity observed in the rat depends strongly on the type of anesthesia used. Power spectra of spontaneous fluctuations and the cross-correlation-based connectivity maps from rats anesthetized with α-chloralose, medetomidine or isoflurane are presented using a high-temporal-resolution imaging sequence that ensures minimal contamination from physiological noise. The results show less localized correlation in rats anesthetized with isoflurane as compared with rats anesthetized with α-chloralose or medetomidine. These experiments highlight the utility of using different types of anesthesia to explore the fundamental physiological relationships of the BOLD signal and suggest that the mechanisms contributing to functional connectivity involve a complicated relationship between changes in neural activity, neurovascular coupling and vascular reactivity.  相似文献   

5.
When applied to functional magnetic resonance imaging (fMRI) data, spatial independent component analysis (sICA), a data-driven technique that addresses the blind source separation problem, seems able to extract components specifically related to physiological noise and brain movements. These components should be removed from the data to achieve structured noise reduction and improve any subsequent detection and analysis of signal fluctuations related to neural activity. We propose a new automatic method called CORSICA (CORrection of Structured noise using spatial Independent Component Analysis) to identify the components related to physiological noise, using prior information on the spatial localization of the main physiological fluctuations in fMRI data. As opposed to existing spectral priors, which may be subject to aliasing effects for long-TR data sets (typically acquired with TR >1 s), such spatial priors can be applied to fMRI data, regardless of the TR of the acquisitions. By comparing the proposed automatic selection to a manual selection performed visually by a human operator, we first show that CORSICA is able to identify the noise-related components for long-TR data with a high sensitivity and a specificity of 1. On short-TR data sets, we validate that the proposed method of noise reduction allows a substantial improvement of the signal-to-noise ratio evaluated at the cardiac and respiratory frequencies, even in the gray matter, while preserving the main fluctuations related to neural activity.  相似文献   

6.
On the origin of respiratory artifacts in BOLD-EPI of the human brain   总被引:6,自引:0,他引:6  
BOLD-based functional MRI (fMRI) can be used to explicitly measure hemodynamic aspects and functions of human neuro-physiology. As fMRI measures changes in regional cerebral blood flow and volume as well as blood oxygenation, rather than neuronal brain activity directly, other processes that may change the above parameters have to be examined closely to assess sensitivity and specificity of fMRI results. Physiological processes that can cause artifacts include cardiac action, breathing and vasomotion. Although there has been substantial research on physiological artifacts and appropriate compensation methods, controversy still remains on the mechanisms that cause the fMRI signal fluctuations. Respiratory-correlated fluctuations may either be induced by changes of the magnetic field homogeneity due to moving organs, intra-thoracic pressure differences, respiration-dependent vasodilation or oxygenation differences. The aim of this study was to characterize the impact of different breathing patterns by varying respiration frequency and/or tidal volume on EPI time courses of the resting human brain. The amount of respiration-related oscillations during three respiration patterns was quantified, and statistically significant differences were obtained in white matter only: p < 0.03 between 6 vs. 12 ml/kg body weight end tidal volume at a respiration frequency of 15/min, p < 0.03 between 12 vs. 6 ml/kg body weight and 15 vs. 10 respiration cycles/min. There was no significant difference between 15 vs. 10 respiration cycles/min at an end tidal volume of 6 ml/kg body weight (p = 0.917). In addition, the respiration-affected brain regions were very similar with EPI readout in the a-p and l-r direction. Based on our results and published literature we hypothesize that venous oxygenation oscillations due to changing intra-thoracic pressure represent a major factor for respiration-related signal fluctuations and increase significantly with increasing end tidal volume in white matter only.  相似文献   

7.
Correlated fluctuations of low-frequency fMRI signal have been suggested to reflect functional connectivity among the involved regions. However, large-scale correlations are especially prone to spurious global modulations induced by coherent physiological noise. Cardiac and respiratory rhythms are the most offending component, and a tailored preprocessing is needed in order to reduce their impact. Several approaches have been proposed in the literature, generally based on the use of physiological recordings acquired during the functional scans, or on the extraction of the relevant information directly from the images. In this paper, the performances of the denoising approach based on general linear fitting of global signals of noninterest extracted from the functional scans were assessed. Results suggested that this approach is sufficiently accurate for the preprocessing of functional connectivity data.  相似文献   

8.
Magnetic resonance imaging (MRI) has recently been applied to study spinal cord function in humans. However, spinal functional MRI (fMRI) encounters major technical challenges with cardiac noise being considered a major source of noise. The present study relied on echo-planar imaging of the cervical cord at short TR (TR=250 ms; TE=40 ms; flip=45 degrees), combined with plethysmographic recordings to characterize the spatiotemporal properties of cardiac-induced signal changes in spinal fMRI. Frequency-based analyses examining signal change at the cardiac frequency confirmed mean fluctuations of about 10% (relative to the mean signal) in the spinal cord and surrounding cerebrospinal fluid (CSF), with maximal responses reaching up to 66% in some voxels. A spatial independent component analysis (sICA) confirmed that cardiac noise is an important source of variance in spinal fMRI with several components showing a response coherent with the cardiac frequency spectrum. The time course of the main cardiac components approximated a sinusoidal function tightly coupled to the cardiac systole with at least one component showing a comparable temporal profile across runs and subjects. Spatially, both the frequency-domain analysis and the sICA demonstrated cardiac noise distributed irregularly along the full rostrocaudal extent of the segments scanned with peaks concentrated in the ventral part of the lateral slices in all scans and subjects, consistent with the major channels of CSF flow. These results confirm that cardiac-induced changes are a significant source of noise likely to affect the detection of spinal Blood Oxygen Level Dependent (BOLD) responses. Most importantly, the complex spatiotemporal structure of cardiac noise is unlikely to be accounted for adequately by ad hoc linear methods, especially in data acquired using long TR (i.e. aliasing the cardiac frequency). However, the reliable spatiotemporal distribution of cardiac noise across scanning runs and within subjects may provide a valid means to identify and extract cardiac noise based on sICA methods.  相似文献   

9.
Blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) studies using parallel imaging to reduce the readout window have reported a loss in temporal signal-to-noise ratio (SNR) that is less than would be expected given a purely thermal noise model. In this study, the impact of parallel imaging on the noise components and functional sensitivity of both BOLD and perfusion-based fMRI data was investigated. Dual-echo arterial spin labeling data were acquired on five subjects using sensitivity encoding (SENSE), at reduction factors (R) of 1, 2 and 3. Direct recording of cardiac and respiratory activity during data acquisition enabled the retrospective removal of physiological noise. The temporal SNR of the perfusion time series closely followed the thermal noise prediction of a √R loss in SNR as the readout window was shortened, with temporal SNR values (relative to the R=1 data) of 0.72 and 0.56 for the R=2 and R=3 data, respectively, after accounting for physiological noise. However, the BOLD temporal SNR decreased more slowly than predicted even after accounting for physiological noise, with relative temporal SNR values of 0.80 and 0.63 for the R=2 and R=3 data, respectively. Spectral analysis revealed that the BOLD trends were dominated by low-frequency fluctuations, which were not dominant in the perfusion data due to signal processing differences. The functional sensitivity, assessed using mean F values over activated regions of interest (ROIs), followed the temporal SNR trends for the BOLD data. However, results for the perfusion data were more dependent on the threshold used for ROI selection, most likely due to the inherently low SNR of functional perfusion data.  相似文献   

10.
The blood-oxygenation-level-dependent (BOLD) signal is an indirect hemodynamic signal that is sensitive to cerebral blood flow (CBF), cerebral blood volume (CBV) and cerebral metabolic rate of oxygen. Therefore, the BOLD signal amplitude and dynamics cannot be interpreted unambiguously without additional physiological measurements, and thus, there remains a need for a functional magnetic resonance imaging (fMRI) signal, which is more closely related to the underlying neuronal activity. In this study, we measured CBF with continuous arterial spin labeling, CBV with an exogenous contrast agent and BOLD combined with intracortical electrophysiological recording in the primary visual cortex of the anesthetized monkey. During inhalation of 6% CO2, it was observed that CBF and CBV are not further increased by a visual stimulus, although baseline CBF for 6% CO2 is below the maximal value of CBF. In contrast, the electrophysiological response to the stimulation was found to be preserved during hypercapnia. As a consequence, the simultaneously measured BOLD signal responds negatively to a visual stimulation for 6% CO2 inhalation in the same voxels responding positively during normocapnia. These observations suggest that the fMRI response to a sensory stimulus for 6% CO2 inhalation occurs in the absence of a hemodynamic response, and it therefore directly reflects oxygen extraction into the tissue.  相似文献   

11.
Respiratory noise is a confounding factor in functional magnetic resonance imaging (MRI) data analysis. A novel method called Respiratory noise Correction using Phase information is proposed to retrospectively correct for the respiratory noise in functional MRI (fMRI) time series. It is demonstrated that the respiratory movement and the phase of functional MRI images are highly correlated in time. The signal fluctuation due to respiratory movements can be effectively estimated from the phase variation and removed from the functional MRI time series using a Wiener filtering technique. In our experiments, this new method is compared with RETROICOR, which requires recording respiration signal simultaneously in an fMRI experiment. The two techniques show comparable performance with respect to the respiratory noise correction for fMRI time series. However, this technique is more advantageous because there is no need for monitoring the subjects’ respiration or changing functional MRI protocols. This technique is also potentially useful for correcting respiratory noise from abnormal breathing or when the respiration is not periodic.  相似文献   

12.
Functional magnetic resonance imaging (fMRI) based on the so-called blood oxygen level-dependent (BOLD) contrast is a powerful tool for studying brain function not only locally but also on the large scale. Most studies assume a simple relationship between neural and BOLD activity, in spite of the fact that it is important to elucidate how the “when” and “what” components of neural activity are correlated to the “where” of fMRI data. Here we conducted simultaneous recordings of neural and BOLD signal fluctuations in primary visual (V1) cortex of anesthetized monkeys. We explored the neurovascular relationship during periods of spontaneous activity by using temporal kernel canonical correlation analysis (tkCCA). tkCCA is a multivariate method that can take into account any features in the signals that univariate analysis cannot. The method detects filters in voxel space (for fMRI data) and in frequency–time space (for neural data) that maximize the neurovascular correlation without any assumption of a hemodynamic response function (HRF). Our results showed a positive neurovascular coupling with a lag of 4–5 s and a larger contribution from local field potentials (LFPs) in the γ range than from low-frequency LFPs or spiking activity. The method also detected a higher correlation around the recording site in the concurrent spatial map, even though the pattern covered most of the occipital part of V1. These results are consistent with those of previous studies and represent the first multivariate analysis of intracranial electrophysiology and high-resolution fMRI.  相似文献   

13.
The study of the brain's functional organization at laminar and columnar level of the cortex with blood oxygenation-level dependent (BOLD) functional MRI (fMRI) is affected by the contribution of large veins downstream from the microvascular response to brain activity. Blood volume- and especially perfusion-based techniques may reduce this problem because of their reduced sensitivity to venous effects, but may not allow the same spatial resolution because of smaller signal changes associated with brain activity. Here we investigated the practical resolution limits of perfusion-weighted fMRI in human visual stimulation experiments. For this purpose, we used a highly sensitive, single-shot perfusion labeling (SSPL) technique at 7 T and compared sensitivity to detect visual activation at low (2 mm, n = 10) and high (1 mm, n = 8) nominal isotropic spatial, and 3 s temporal, resolution with BOLD in 5½-minute-long experiments. Despite the smaller absolute signal change with activation, 2 mm resolution SSPL yielded comparable sensitivity to BOLD. This was attributed to a superior suppression of physiological noise with SSPL. However, at 1 mm nominal resolution, SSPL sensitivity fell on average at least 42% below that of BOLD, and detection of visual activation was compromised. This is explained by the fact that at high resolution, with both techniques, typically thermal noise rather than physiological noise dominates sensitivity. The observed sensitivity loss implies that to perform 1-mm resolution, perfusion weighted fMRI with a robustness similar to BOLD, scan times that are almost 3 times longer than the comparable BOLD experiment are required. This is in line with or slightly better than previous comparisons between perfusion-weighted fMRI and BOLD. The lower sensitivity has to be weighed against the spatial fidelity advantages of high-resolution perfusion-weighted fMRI.  相似文献   

14.
Neuroimaging methodology predominantly relies on the blood oxygenation level dependent (BOLD) signal. While the BOLD signal is a valid measure of neuronal activity, variances in fluctuations of the BOLD signal are not only due to fluctuations in neural activity. Thus, a remaining problem in neuroimaging analyses is developing methods that ensure specific inferences about neural activity that are not confounded by unrelated sources of noise in the BOLD signal. Here, we develop and test a new algorithm for performing semiblind (i.e., no knowledge of stimulus timings) deconvolution of the BOLD signal that treats the neural event as an observable, but intermediate, probabilistic representation of the system's state. We test and compare this new algorithm against three other recent deconvolution algorithms under varied levels of autocorrelated and Gaussian noise, hemodynamic response function (HRF) misspecification and observation sampling rate. Further, we compare the algorithms' performance using two models to simulate BOLD data: a convolution of neural events with a known (or misspecified) HRF versus a biophysically accurate balloon model of hemodynamics. We also examine the algorithms' performance on real task data. The results demonstrated good performance of all algorithms, though the new algorithm generally outperformed the others (3.0% improvement) under simulated resting-state experimental conditions exhibiting multiple, realistic confounding factors (as well as 10.3% improvement on a real Stroop task). The simulations also demonstrate that the greatest negative influence on deconvolution accuracy is observation sampling rate. Practical and theoretical implications of these results for improving inferences about neural activity from fMRI BOLD signal are discussed.  相似文献   

15.
Resting-state functional magnetic resonance imaging (fMRI) is a recent breakthrough in neuroimaging research able to describe “in vivo” the spontaneous baseline neuronal activity characterized by blood oxygen level dependent (BOLD) signal fluctuations at slow frequency (0.01–0.1 Hz) that, in the absence of any task, forms spatially distributed functional connectivity networks, called resting state networks (RSNs). The aim of this study was to investigate, in the young and healthy population, the changing of the RSNs after acute ingestion of an alcohol dose able to determine a blood concentration (0.5 g/L) that barely exceeds the legal limits for driving in the majority of European Countries. Fifteen healthy volunteers underwent two fMRI sessions using a 1.5 T MR scanner before and after alcohol oral consumption. The main sequence acquired was EPI 2D BOLD, one per each session. To prevent the excessive alcohol consumption the subjects underwent the estimation of blood rate by breath test and after the stabilization of blood alcohol level (BAL) at 0.5 g/L the subjects underwent the second fMRI session. Functional data elaboration was carried out using the probabilistic independent component analysis (PICA). Spatial maps so obtained were further organized, with MELODIC multisession temporal concatenation FSL option, in a cluster representing the group of pre-alcohol sessions and the group of post-alcohol sessions, followed by the dual regression approach in order to evaluate the increase or decrease in terms of connectivity in the RSNs between the two sessions at group level.The results we obtained reveal that acute consumption of alcohol reduces in a significant way the BOLD signal fluctuations in the resting brain selectively in the sub-callosal cortex (SCC), in left temporal fusiform cortex (TFC) and left inferior temporal gyrus (ITG), which are cognitive regions known to be part of the reward brain network and the ventral visual system.  相似文献   

16.
Salim Lahmiri 《Physics letters. A》2018,382(34):2326-2333
The purpose of the current work is to study nonlinear dynamics in neuronal activity within human brain visual cortex based on blood-oxygen-level dependent (BOLD) contrast imaging. In particular, based on functional magnetic resonance imaging (fMRI) signals, measures of fractality, complexity, and state disorder are estimated from central and peripheral eccentricity bands across three visual areas. Statistical results from analysis of 48750 resting-state fMRI signals show evidence that nonlinear dynamics of neuronal activity in resting-state in central and peripheral eccentricity bands of human visual cortex are persistent. However, they exhibit heterogeneous variability across eccentricity bands and visual areas. Also, information content in first visual area is more ordered than in the second one, whilst information content in the third visual area is the least ordered. These interesting nonlinear statistical properties are a further step toward understanding neuronal activity and nonlinear dynamics in human brain visual cortex.  相似文献   

17.
Functional magnetic resonance imaging (fMRI) is increasingly being applied in the study of brain effects of nicotine. In addition, because tobacco smoking is common, many subjects studied with fMRI for other reasons may have appreciable levels of nicotine in plasma and brain during scanning. However, there is concern that the vascular effects of nicotine may alter the coupling between blood oxygen level dependent (BOLD) signal and neuronal activity. The objective of this study was to test for evidence of alteration of BOLD signal response of occipital cortex, a region with a relatively low concentration of neuronal nicotine receptors, to photic stimulation during intravenous infusion of nicotine. Nine nicotine dependent healthy smokers were withdrawn from nicotine under controlled conditions and then scanned while receiving photic stimulation and successive intravenous infusions of saline and nicotine. No evidence for an effect of nicotine on BOLD signal response to photic stimulation was detected at the doses studied. This observation suggests that nicotine does not alter the coupling between BOLD signal and neuronal activity in the visual cortex.  相似文献   

18.
A parametric method is proposed to examine the relationship between neuronal activity, measured with event related potentials (ERPs), and the hemodynamic response, observed with functional magnetic resonance imaging (fMRI), during an auditory oddball paradigm. After verifying that the amplitude of the evoked response P300 increases as the probability of oddball target presentation decreases, we explored the corresponding effect of target frequency on the fMRI signal. We predicted and confirmed that some regions that showed activation changes following each oddball are affected by the rate of presentation of the oddballs, or the probability of an oddball target. We postulated that those regions that increased activation with decreasing probability might be responsible for the corresponding changes in the P300 amplitude. fMRI regions that correlated with the amplitude of the P300 wave were supramarginal gyri, thalamus, insula and right medial frontal gyrus, and are presumably sources of the P300 wave. Other regions, such as anterior and posterior cingulate cortex, were activated during the oddball paradigm but their fMRI signal changes were not correlated with the P300 amplitudes. This study thus shows how combining fMRI and ERP in a parametric design identifies task-relevant sources of activity and allows separation of regions that have different response properties.  相似文献   

19.
The “direct detection” of neuronal activity by MRI could offer improved spatial and temporal resolution compared to the blood oxygenation level-dependent (BOLD) effect. Here we describe initial attempts to use MRI to detect directly the neuronal currents resulting from spontaneous alpha wave activity, which have previously been shown to generate the largest extracranial magnetic fields. Experiments were successfully carried out on four subjects at 3 T. A single slice was imaged at a rate of 25 images per second under two conditions. The first (in darkness with eyes-closed) was chosen to promote alpha wave activity, while the second (eyes-open viewing a visual stimulus) was chosen to suppress it. The fluctuations of the phase and magnitude of the resulting MR image data were frequency analysed, and tested for the signature of both alpha wave activity and neuronal activity evoked by the visual stimulus.

Regions were found that consistently showed elevated power in fluctuations of the phase of the MR signal, in the frequency range of alpha waves, during the eyes-closed condition. It was conservatively assumed that if oscillations occurred at the same frequency in the magnitude signal from the same region or at the same frequency in the phase or magnitude signal from other regions overlying large vessels or cerebrospinal fluid (CSF), then the phase changes were not due to neuronal activity related to alpha waves. Using these criteria the data obtained were consistent with direct detection of alpha wave activity in three of the four volunteers. No significant MR signal fluctuations due to evoked activity were identified.  相似文献   


20.
Resting fluctuations in arterial CO2 (a cerebral vasodilator) are believed to be an important source of low-frequency blood oxygenation level dependent (BOLD) signal fluctuations. In this study we focus on the two commonly used resting-states in functional magnetic resonance imaging experiments, eyes open and eyes closed, and quantify the degree to which measured spontaneous fluctuations in the partial pressure of end-tidal CO2 (Petco2) relate to BOLD signal time series. A significantly longer latency of BOLD signal changes following Petco2 fluctuations was found in the eyes closed condition compared to with eyes open, which may reveal different intrinsic vascular response delays in CO2 reactivity or an alteration in the net BOLD signal arising from Petco2 fluctuations and altered neural activity with eyes closed. By allowing a spatially varying time delay for the compensation of this temporal difference, a more spatially consistent CO2 correlation map can be obtained. Finally, Granger-causality analysis demonstrated a “causal” relationship between Petco2 and BOLD. The identified dominant Petco2→BOLD directional coupling supports the notion that Petco2 fluctuations are indeed a cause of resting BOLD variance in the majority of subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号