首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
马建军 《物理学报》2013,62(2):23401-023401
采用准经典轨线方法,在碰撞能为0.6 eV时,研究了反应物NO分子的转动激发对发生在3A"和3A'势能面上的反应N(4S)+NO(X2Π)→N2(X3Σg-)+O(3P)的立体动力学性质的影响. 详细讨论了在反应物分子的不同转动态下发生在两个势能面上反应的矢量性质. 结果表明, 反应物分子NO的转动激发对发生在3A′势能面上的立体动力学性质产生重大影响, 这可能与该势能面上存在一个早期势垒有关.  相似文献   

2.
采用G3MP2B3方法研究了氧负离子与乙腈反应的势能剖面.在(U)B3LYP/6-31+G(d,p)理论水平下分别优化了该反应势能面上反应物、产物、中间体和过渡态的分子结构,采用G3MP2B3方法校正了这些关键点的能量. 势能面上的各个反应路径均通过针对过渡态的內禀反应坐标理论计算加以确定. 分别考察了四个可能的热力学产物通道,即质子转移、氢原子转移、H2+转移和双分子亲核取代反应途径. 其中,经H2+转移生成H2O的反应通道为该反应的主要产物通道.  相似文献   

3.
利用"时间切片"离子速度成像技术研究了N2O分子在134.20、135.20和136.43 nm波长下的真空紫外光解动力学. 实验中通过采集解离产物O(1SJ=0)的离子影像来研究O(1SJ=0)+N2(X1g+)这一解离通道. 从各个波长下的实验影像可获得产物N2(X1g+)的振动态分辨的结构,进而得到产物的总平动能谱和产物N2的振动态布居. 实验结果表明在实验的光解波长下,产物N2(X1g+)主要布居在v=2和v=3. 此外,还得到了产物N2的振动态分辨的各向异性参数β,从中发现产物N2β值在三个解离波长下均表现出相似的特征,即随着振动量子数的增大,β值从趋近于2逐渐减小至1.4. 这一现象表明低振动态产物是通过一个以平行跃迁解离为主的解离过程产生的,而高振动态的产物来自于一个更加弯曲的中间构型的解离. 此推论与在平动能谱中所见到的最强转动态布居随着振动量子数的增大而出现的位移是相一致的.  相似文献   

4.
利用一束波长为36055nm的激光,通过(3+1)共振多光子电离方法制备纯净的且处于X2Π1/2,3/2(000)态的N2O+离子,用另一束激光激发所制备的离子到第一电子激发态A2Σ+的不同振动能级,然后解离,通过检测解离碎片NO+强度随光解光波长的变化,得到了转动分辨的N2  相似文献   

5.
多模偶相干态光场中的N次方Y压缩与N次方H压缩特性研究   总被引:62,自引:39,他引:23  
许定国  侯瑶  杨志勇  侯洵 《光子学报》1999,28(6):481-493
本文根据新近建立的多模辐射场的广义非线性等阶高阶压缩理论,对多模偶相干态光场冲|ψ,e〉q中的N次方Y压缩、N次方H压缩、N-Y最小测不准态以及N-H最小测不准态等进行了详细研究。结果表明:1)当N为偶数时,态|ψ,e〉q恒处于N-Y最小测不准态;当N为奇数时,态|ψ,e〉q在一定条件下存在着周期性变化的、任意阶的N次方Y压缩效应,2)当q·N为偶数时,态|ψ,e〉q恒处于N-H最小测不准态。当q·N为奇数时,在另外的条件下,态|ψ,e〉q存在着周期性变化的、任意阶的N次方H压缩效应。3)N次方Y压缩效应与N次方H压缩效应两者的压缩程度和深度均与几率幅yq(e)、压缩参数Rj、各模的初始相位ψj(或者初始相位和∑j=1qψj)、压缩阶数N及腔模总数q等非线性相关,后者与上述诸参量的非线性关联程度要比前者的更强。  相似文献   

6.
本文利用新近建立的多模压缩态理论,详细研究了一种新型的多模虚偶相干态光场|Ψi,e(2)>q的广义非线性等阶N次方Y压缩与等阶N次方H压缩特性.结果发现:1)态|Ψi,e(2)>q是一种典型的多模非经典光场,当压缩阶数N为奇数时,态|Ψi,e(2)>q在一定条件下总可呈现出周期性变化的、任意阶的等阶N次方Y压缩效应;当腔模总数q与压缩阶数N这两者的乘积q·N为奇数时,则在一定条件下态|Ψi,e(2)>q又可呈现出周期性变化的、任意阶的等阶N次方H压缩效应.2)态|Ψi,e(2)>q的等阶N次方Y压缩与等阶N次方H压缩效应这两者的压缩程度和压缩深度分别与几率幅γq(e)、压缩参数Rj、各模的初始相位φj(或者各模的初始相位和 φj)、压缩阶数N以及腔模(指纵模)总数q等呈较强的非线性关联,等阶N次方H压缩效应与上述诸参量之间的非线性关联程度要比等阶N次方Y压缩效应的更强.3)多模虚偶相干态光场|Ψi,e(2)>q与多模偶相干态光场|Ψ,e>q及多模复共轭偶相干态光场|Ψ*,e(2)>q这后两者的等阶N次方Y压缩效应和等阶N次方H压缩效应的压缩条件和压缩特性正好相反,这种现象就称为相反压缩.  相似文献   

7.
应用群论及原子分子反应静力学方法推导了SiO2分子的电子态及其离解极限,采用B3P86方法,在6-311G**水平上,优化出SiO2基态分子稳定构型为单重态的C2V构型,其平衡核间距Re=RSi—O=0.1587 nm,∠OSiO=111.2°,能量为-440.4392 a.u..同时计算出基态的简正振动频率:对称伸缩振动频率ν(B2)=945.4cm-1,弯曲振动频率ν(A1)=273.5 cm-1和反对称伸缩振动频率ν(A1)=1362.9cm-1.在此基础上,使用多体项展式理论方法,导出了基态SiO2分子的全空间解析势能函数,该势能函数准确再现了SiO2(C2V)平衡结构.  相似文献   

8.
使用二次组态相互作用方法,在aug-cc-pvtz基组水平上对LiO2(C2VX2A2)基态分子进行了几何优化,得到了它的平衡几何构型和力常数.根据原子分子反应静力学原理得到可能的电子状态和离解极限.应用多体展式理论方法推导出了LiO2(C2VX2A2)基态分子的解析势能函数.  相似文献   

9.
刘海  李启楷  何远航 《物理学报》2013,62(20):208202-208202
ReaxFF/lg势函数是在ReaxFF的基础上增加了对范德华引力的描述, 因此可以更好地用于描述晶体密度和结构, 而含能材料密度很大程度上影响着爆轰的宏观性质(如爆速、反应区宽度、能量输出结构等). 本文采用ReaxFF/lg反应力场分析了高温条件下凝聚相CL20-TNT共晶的初始分解情况, 并通过简单的指数函数拟合势能演化曲线获得了平衡和诱导期以及整体反应时间, 随后通过反应速率方程得到了共晶热解的活化能Ea (185.052 kJ/mol). CL20-TNT共晶热解过程中CL20分子均在TNT之前分解完毕, 并且随着温度的升高, TNT的分解速率明显加快, 温度越高二者完全分解所需的时间越接近. 有限时间步长下的产物识别分析显示主要产物为NO2, NO, CO2, N2, H2O, HON, HNO3. NO2是C–NO2和N–NO2键均裂共同贡献的结果, 其产量快速地增加, 达到峰值后开始减少, 此过程伴随着NO2参与其他反应使得NO2中的N原子进入到其他的含N 分子中. 次要产物主要为CO, N2O, N2O5, CHO. N2O具有很强的氧化能力, 使其分布有着剧烈的波动特征. 关键词: 共晶结构 高温热解 ReaxFF/lg 势函数 分子动力学  相似文献   

10.
以Nd:YAG激光器的二倍频输出光为抽运光,其三倍频输出抽运的光学参量发生/放大器输出光为探测光,利用光学-光学双色双共振多光子离化光谱技术(OODR-MPI),获得了NO2分子在605—675nm探测光波长范围内的多光子离化激发谱. 通过对NO2分子离化机理的分析,确定了在此波长区间,NO2分子经1+3+1双共振多光子过程离化,离化通道为NO2(X2A1)  相似文献   

11.
Heterocyclic aramid fibers are one of the high-performance fibers with excellent mechanical and thermal properties. In this article, the thermal decomposition behaviors of a type of the fibers were studied in nitrogen and air by pyrolysis/gas chromatography–mass spectrometry (Py/GC-MS), thermal gravimetric analysis–differential thermal analysis/Fourier transform infrared spectroscopy (TGA-DTA/FTIR), and thermal gravimetric analysis–differential thermal analysis/mass spectrometry (TGA-DTA/MS). The results showed that under nitrogen atmosphere, the thermal decomposition mainly happened between 520°C and 580°C, the temperature of the maximum weight loss rate was 550°C, and the weight remaining at 800°C was 58%. HCN, NH3, NO2, NO, CO2, CO, H2O, and some other compounds containing benzene rings were detected by the TGA-DTA/FTIR. Among these released chemicals, the intensity of the absorption peak assigned to CO2 was the strongest. These chemicals were also identified by the TGA-DTA/MS. The Py-GC/MS analysis revealed that the number of chromatographic peaks increased with the increase of temperature. Most of the pyrolysis products were produced between 550°C and 600°C, which represented the major pyrolysis process. Moreover, the detection of benzene ring containing compound fragments reflected the process of the molecular chain scission. In air atmosphere, the thermal decomposition mainly happened between 500°C and 680°C. The maximum weight loss rate was observed at 600°C, and almost 100% weight was lost at 900°C. NH3, NO2, CO2, and H2O were detected by the TGA-DTA/MS, and the ion current intensity of CO2 was again the strongest with a strong oxidation reaction at around 670°C. It was speculated that the thermal decomposition began with the breaking of the bonds between PPTA (poly-p-phenylene terephthalamide) blocks and heterocyclic blocks at high temperature. Then, with the increase of temperature, the chemical bonds inside the PPTA blocks and heterocyclic blocks were broken. In this process, free radicals that led to restructuring and new breakages to produce micromolecular products were introduced.  相似文献   

12.
Thermal decomposition of a famous high oxidizer ammonium dinitramide (ADN) under high temperatures (2000 and 3000 K) was studied by using the ab initio molecular dynamics method.Two different temperature-dependent initial decomposition mechanisms were observed in the unimolecular decomposition of ADN,which were the intramolecular hydrogen transfer and N-NO2 cleavage in N (NO2)-.They were competitive at 2000 K,whereas the former one was predominant at 3000 K.As for the multimolecular decomposition of ADN,four different initial decomposition reactions that were also temperature-dependent were observed.Apart from the aforementioned mechanisms,another two new reactions were the intermolecular hydrogen transfer and direct N-H cleavage in NH4+.At the temperature of 2000 K,the N-NO2 cleavage competed with the rest three hydrogen-related decomposition reactions,while the direct N-H cleavage in NH4+ was predominant at 3000 K.After the initial decomposition,it was found that the temperature increase could facilitate the decomposition of ADN,and would not change the key decomposition events.ADN decomposed into small molecules by hydrogen-promoted simple,fast and direct chemical bonds cleavage without forming any large intermediates that may impede the decomposition.The main decomposition products at 2000 and 3000 K were the same,which were NH3,NO2,NO,N2O,N2,H2O,and HNO2.  相似文献   

13.
cndo/Force method is used to evaluate the redundancy free internal valence force fields for two conformers of nitromethane. The initial force field is set up by taking the interaction and bending force constants from this method and transferring the stretching force constants from the force fields of chemically related molecules. The final force field is obtained by refining the initial force field using vibrational frequencies of isotopic speciesviz CH3NO2, CD3NO2, CH3 15NO2 and CH3N18O2. The final force field thus obtained is reasonable on the basis of frequency fit and potential energy distribution. The barrier to internal rotation is found to be 0.048 kcal mol−1.  相似文献   

14.
The ―NH2, ―NO2, ―NHNO2, ―C(NO2)3 and ―CF(NO2)2 substitution derivatives of 4,4′,5,5′‐tetranitro‐2,2′‐1H,1′H‐2,2′‐biimidazole were studied at B3LYP/aug‐cc‐pVDZ level of density functional theory. The crystal structures were obtained by molecular mechanics (MM) methods. Detonation properties were evaluated using Kamlet–Jacobs equations based on the calculated density and heat of formation. The thermal stability of the title compounds was investigated via the energy gaps (?ELUMO ? HOMO) predicted. Results show that molecules T5 (D = 10.85 km·s?1, P = 57.94 GPa) and T6 (D = 9.22 km·s?1, P = 39.21 GPa) with zero or positive oxygen balance are excellent candidates for high energy density oxidizers (HEDOs). All of them appear to be potential explosives compared with the famous ones, octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetraazocane (HMX, D = 8.96 km·s?1, P = 35.96 GPa) and hexanitrohexaazaisowurtzitane (CL‐20, D = 9.38 km·s?1, P = 42.00 GPa). In addition, bond dissociation energy calculation indicates that T5 and T6 are also the most thermally stable ones among the title compounds. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
A comparative study of the effect of gamma and laser irradiation on the thermal, optical and structural properties of the CR-39 diglycol carbonate solid state nuclear track detector has been carried out. Samples from CR-39 polymer were classified into two main groups: the first group was irradiated by gamma rays with doses at levels between 20 and 300 kGy, whereas the second group was exposed to infrared laser radiation with energy fluences at levels between 0.71 and 8.53 J/cm2. Non-isothermal studies were carried out using thermogravimetry, differential thermogravimetry and differential thermal analysis to obtain activation energy of decomposition and transition temperatures for the non-irradiated and all irradiated CR-39 samples. In addition, optical and structural property studies were performed on non-irradiated and irradiated CR-39 samples using refractive index and X-ray diffraction measurements. Variation in the onset temperature of decomposition T o, activation energy of decomposition E a, melting temperature T m, refractive index n and the mass fraction of the amorphous phase after gamma and laser irradiation were studied.

It was found that many changes in the thermal, optical and structural properties of the CR-39 polymer could be produced by gamma irradiation via degradation and cross-linking mechanisms. Also, the gamma dose has an advantage of increasing the correlation between thermal stability of the CR-39 polymer and bond formation created by the ionizing effect of gamma radiation. On the other hand, higher laser-energy fluences in the range 4.27–8.53 J/cm2 decrease the melting temperature of the CR-39 polymer and this is most suitable for applications requiring molding of the polymer at lower temperatures.  相似文献   

16.
庞学霞  邓泽超  贾鹏英  梁伟华 《物理学报》2011,60(12):125201-125201
利用一个空间零维大气等离子体模型对其中的氮氧化物在不同电离度情况下的变化规律进行了数值模拟,得到了放电后不同初始电子密度下的氮氧化物(包括NO,NO+,NO2,NO2+,N2O,N2O+,NO3和N2O5)及影响其产消的主要反应物N和O3的密度随时间的演化规律.结果表明,电子初始密度ne0=109 cm-3时,NO和NO2的去除率较高,氮氧化物总密度较小,最适合消除氮氧化物污染.同时,还对N和O3随电离度变化的行为进行了分析. 关键词: 大气等离子体 氮氧化物 电离度 数值模拟  相似文献   

17.
CBS-QB3 method has been employed to determine the geometries, the vibrational frequencies of the reactants, the products and the transition states involved in intramolecular hydrogen-transfer and decomposition reactions of the free gas-phase H3N···HN(NO2)2 (ADN*). The results show that the intramolecular hydrogen-transfer reaction of ADN* is more feasible than that of HDN. ADN* and its hydrogen-transfer isomers ADN*-IIa,b,c decompose along four channels to form NH3 + HONO + 2NO (PI), ?H + ?O3 + N2 + NH3 (PII), ?H + ?O2 + N2O + NH3 (PIII), and HNO3 + N2O + NH3 (PIV), respectively. It has been found that the dominant decomposition channels are PI and PIII. The hydrogen-transfer reaction can reduce the barrier of elimination of NO2 and forming N2O reactions in ADN* and HDN. The decomposition of ADN*-IIc to form NO2 and N2O is more feasible than that of the gas-phase HDN. The rate constants (k) of rate-determining step of ADN* show that kPI and kPIII are higher than kPIV and kPII. Compared with HDN-IIc → N2O+?H+?O2, kPIII of ADN*-IIc is significantly higher than that of kHDN-IIc. These results reveal that NH3 (as a chaperon) has a certain influence on the decomposition mechanisms and kinetics of ADN*.  相似文献   

18.
First principles molecular orbital and plane‐wave ab initio calculations have been used to investigate the structural and energetic properties of a new cage compound 2, 4, 6, 8, 12‐pentanitro‐10‐(3, 5, 6‐trinitro (2‐pyridyl))‐2, 4, 6, 8, 12‐hexaazatetracyclo [5.5.0.03,11.05,9]dodecane (PNTNPHATCD) in both the gas and solid phases. The molecular orbital calculations using the density functional theory methods at the B3LYP/6‐31G(d,p) level indicate that both the heat of formation and strain energy of PNTNPHATCD are larger than those of 2, 4, 6, 8, 10, 12‐hexanitro‐2, 4, 6, 8, 10, 12‐hexaazatetracyclo [5.5.0.0.0] dodecane (CL‐20). The infrared spectra and the thermodynamic property in gas phase were predicted and discussed. The calculated detonation characteristics of PNTNPHATCD estimated using the Kamlet–Jacobs equation equally matched with those of CL‐20. Bond‐breaking results on the basis of natural bond orbital analysis imply that C–C bond in cage skeleton, C–N bond in pyridine, and N–NO2 bond in the side chain of cage may be the trigger bonds in the pyrolysis. The structural properties of PNTNPHATCD crystal have been studied by a plane‐wave density functional theory method in the framework of the generalized gradient approximation. The crystal packing predicted using the Condensed‐phase Optimized Molecular Potentials for Atomistic Simulation Studies (COMPASS) force fields belongs to the Pbca space group, with the lattice parameters a = 20.87 Å, b = 24.95 Å, c = 7.48 Å, and Z = 8, respectively. The results of the band gap and density of state suggest that the N–NO2 bond in PNTNPHATCD may be the initial breaking bond in the pyrolysis step. As the temperature increases, the heat capacity, enthalpy, and entropy of PNTNPHATCD crystal all increase, whereas the free energy decreases. Considering that the cage compound has the better detonation performances and stability, it may be a superior high energy density compound. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The thermal unimolecular decomposition of dichloroketene CCl2CO → CCl2 + CO (reaction 1) was studied experimentally and computationally. Dichloroketene was produced by the pulsed laser photolysis of hexachloroacetone, and the kinetics of its decay due to reaction 1 was monitored using photoionization mass spectrometry. Rate constants of reaction 1 were determined in direct time-resolved experiments as a function of temperature (740–870 K) and bath gas density ([He] = (3–25) × 1016 atom cm−3, [N2] = 12 × 1016 molecule cm−3). Reaction 1 is in the falloff region under these conditions. The potential energy surface (PES) of reaction 1 was studied using quantum chemical methods. The experimental k1 (T, P) dependence was reproduced with an RRKM/master equation model based on quantum chemical calculations. Parameterized expressions for the rate constants of reaction 1 and the reverse reaction, that of CCl2 with CO, were obtained over wide ranges of temperatures and pressures. The enthalpy of formation of CCl2CO was determined in quantum chemical calculations. The kinetics of the reaction of dichloroketene with hydrogen atoms (reaction 2), an important channel of destruction of CCl2CO in flames, was studied computationally. The PES of reaction 2 was studied using quantum chemical methods. Temperature and pressure dependences of the rate constants of the four dominant reaction channels were obtained in transition state theory and master equation calculations; the technique of isodesmic reactions for transition states was applied to the channel of Cl atom abstraction. Analysis of the experimental data and the computational models of reactions 1 and 2 demonstrates that thermal decomposition is a major pathway of destruction for dichloroketene in combustion systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号