首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermoacoustic refrigeration is an emerging cooling technology which does not rely for in its operation on the use of any moving parts or harmful refrigerants. This technology uses acoustic waves to pump heat across a temperature gradient. The temperature gradient forms across the ends of a porous body, called the stack, enclosed in a resonator. The vast majority of thermoacoustic refrigerators to date have used electromagnetic loudspeakers to generate the acoustic input. In this paper, the design, construction, operation, and modeling of a piezo-driven thermoacoustic refrigerator are detailed. The performance of the refrigerator is significantly enhanced by coupling the acoustic driver with an elastic structure, referred to as a dynamic magnifier. Proper selection of the magnifier parameters can increase the magnitude of the pressure oscillations across the stack, and consequently the temperature difference. The magnified refrigerator demonstrates the effectiveness of piezoelectric actuation in moving 0.3 W of heat across a 10 °C temperature difference with an input power of 7 W. All the theoretical predictions are validated against data from experimental prototypes. The developed theoretical and experimental tools can serve as invaluable means for the design and testing of piezo-driven thermoacoustic refrigerator configurations.  相似文献   

2.
热声制冷的基本原理是热声效应,但热声效应一般只在高声强下发生,随之将产生强烈的非线性效应.本文在自行研制的热声制冷机试验台上,研究了板叠对声场非线性的影响以及非线性对热声系统性能的影响.结果表明,板叠的存在使得声波明显衰减,压比约减小5%,并且各次谐波的幅值和增长速率较无板叠时均有所降低;非线性效应限制了基波的增长,导致了高次谐波产生,且基波和高次谐波的增长均有发展为饱和的趋势.板叠的存在产生明显的声制冷效果,制冷温度随驱动功率增大先增加后减小.在50 W时达到最低温度5.1℃.  相似文献   

3.
A low-frequency open-air thermoacoustic engine in a Helmholtz resonator has been constructed. Tests indicate that the system resonates in the Helmholtz mode for modest thermoacoustic stack temperature differences using stacks of varying type and pore size located within the neck of the Helmholtz resonator. The maximum acoustic pressure radiated from the open end of the resonator corresponds to 81 dB-SPL ref 20 μPa at a stack temperature difference of 185 K and an input electric power of 276 W. The system is well characterized by a numerical model of a representative stack.  相似文献   

4.
热声制冷机作为一种新型制冷技术,具有效率高、可靠性好、环境友好等特点。目前,室温温区热声制冷机存在回热器声功利用量少、出口声功大、回收损失大等问题。本文基于SAGE软件,对室温温区热声制冷机的工作机理进行了研究。通过对两级及以上热声制冷机的制冷系数、制冷量以及进出口阻抗相角进行分析,探寻同时提高声功利用率和制冷量的方法。在分别以制冷系数和制冷量为优化计算目标的前提下,得到了室温温区多级热声制冷机的制冷量、制冷系数及声功利用率随级数变化的变化规律。计算结果显示,多级热声制冷机对出口声功的利用率存在最大值。可根据实际需求综合考虑制冷系数及制冷量,以得到较优的制冷工况。  相似文献   

5.
Thermoacoustic engines convert heat energy into high amplitude sound waves, which is used to drive thermoacoustic refrigerator or pulse tube cryocoolers by replacing the mechanical pistons such as compressors. The increasing interest in thermoacoustic technology is of its potentiality of no exotic materials, low cost and high reliability compared to vapor compression refrigeration systems. The experimental setup has been built based on the linear thermoacoustic model and some simple design parameters. The engines produce acoustic energy at the temperature difference of 325–450 K imposed along the stack of the system. This work illustrates the influence of stack parameters such as plate thickness (PT) and plate spacing (PS) with resonator length on the performance of thermoacoustic engine, which are measured in terms of onset temperature difference, resonance frequency and pressure amplitude using air as a working fluid. The results obtained from the experiments are in good agreement with the theoretical results from DeltaEc.  相似文献   

6.
高岗  张浩  李青 《低温与超导》2012,(11):16-17,79
给出了一种声学调相变压结构,并理论上讨论了该结构的调相变压机理。结果表明:在一定的几何条件下,该结构能够实现不受负载影响的声压放大功能,并输出声压倒相;将该结构应用于热声热机驱动热声制冷机或脉冲管制冷机的耦合,可以取得更好的效果。  相似文献   

7.
Condensation may occur in an open-flow thermoacoustic cooler with stack temperatures below the saturation temperature of the flowing gas. In the experimental device described here the flowing gas, which is also the acoustic medium, is humid air, so the device acts as a flow-through dehumidifier. The humid air stream flows through an acoustic resonator. Sound energy generated by electrodynamic drivers produces a high-amplitude standing wave inside of the resonator, which causes cooling on a thermoacoustic stack. Condensation of water occurs as the humid air passes through the stack and is cooled below its dew point, with the condensate appearing on the walls of the stack. The dry, cool air passes out of the resonator, while the condensate is wicked away from the end of the stack. Thermoacoustic heat pumping is strongly affected by the form of the condensate inside of the stack, whether condensed mostly on the stack plates, or largely in the form of droplets in the gas stream. Two simple models of the effect of the condensate are matched to a measured stack temperature profile; the results suggest that the thermoacoustic effect of droplets inside the stack is small.  相似文献   

8.
热声制冷机主要由声驱动器、共振管、板叠、高低温端换热器、声容等部件组成。它具有运动部件少、运行可靠、振动小和寿命长等优点 ,在军事、航天、微电子、低温物理等领域有着十分诱人的应用前景。文中运用经典线性热声理论对热声制冷机各个组成部件设计进行了介绍 ,在此基础上设计了一台扬声器驱动热声制冷机 ,并用专业计算软件进行了数值模拟验证 ,为热声制冷机进一步优化与发展提供了一个解决方案。  相似文献   

9.
电动声源热声致冷机声学和计算实例   总被引:3,自引:2,他引:1       下载免费PDF全文
我们将各种热声致机简化为一包括声学终端在内的声管道系统,并通过实例讨论了致冷机的声学特性,该管道系统与一般声管道不同:1.在热声堆中热波和粘滞波不可不计。2.在热声堆与声管连接时,必需考虑合成波的体积流;而热声堆内只需考虑传播波的体积流。本文对此提出了阻抗连接条件的修正。实例使用电动扬声器为声源,给出了热声行波和驻波致冷的声学计算方法以及它们的声学特性,所用扬声器的标称伏安为100VA,可为热声致  相似文献   

10.
磁致伸缩换能器辐射板形状对声场分布的影响   总被引:1,自引:0,他引:1  
磁致伸缩换能器可作为热声制冷机的声源装置,辐射板的形状直接影响声压输出效率,从而影响制冷效果。为提高换能器工作效率、减小换能器体积,辐射板需在Terfenol-D棒的激励下产生大振幅、高频率的活塞振型。针对这一问题,应用ATILA软件分析了磁致伸缩换能器辐射板形状对谐振腔振动幅频特性的影响以及对谐振腔内声场分布的影响。结果表明:相同激励条件下,凹球面辐射板出现活塞振型时振幅最大,对应谐振腔中声压幅值最高;谐振腔端面形状为凹球面时,具有聚焦声压幅值的作用;端面形状为凹发射端-凸反射端组合的谐振腔内声压幅值最高。以上结论为合理设计辐射板、谐振腔两端面组合形状提供了参考。  相似文献   

11.
Thermoacoustic refrigerators work with high amplitude sound waves, which are often created using an acoustic source coupled to a resonator. This coupling can be calculated analytically using linear acoustic equations and a linear model of the loudspeaker. This paper makes a comparison between such a coupling and measurements obtained in a large-scale thermoacoustic resonator constructed at the University of Manchester. The resonator was driven from low to large pressure amplitudes, with drive ratios up to 10%. It is shown that a good agreement is obtained for small amplitudes and this progressively worsens as the amplitude is increased. In the absence of wave harmonics and loudspeaker nonlinearities, the increasing discrepancy is attributed to the presence of minor losses.  相似文献   

12.
针对本实验室一台声驱动热声系统,采用传递函数法研究声驱动系统中回热器的特征阻抗和传播常数.通过调节谐振管长度,改变回热器表面的阻抗,从理论上分析了回热器网络传输方程中的声传播常数、特征阻抗与系统网络元件中的阻抗、导纳和流的关系.并且进一步讨论有无换热器以及不同的加热功率对回热器网络参数的影响.结论有利于进一步量化回热器的网络参数.  相似文献   

13.
分析和研究了频率对热声制冷机声压、温差和声功的影响 ;使用网络模型计算的结果与实验结果相吻合 ;该研究也是对网络模拟和声功测量方法的验证。  相似文献   

14.
Biwa T 《Ultrasonics》2006,44(Z1):e1523-e1526
Where, how much and how efficiently the energy conversion takes place in a regenerator of a thermoacoustic engine are expressed using the axial distribution of acoustic work flow and heat flow. As a first step in determining the energy flows inside the regenerator, measuring methods of the work flow are briefly described and the experimental results in an acoustic resonator are shown. Applicability of these methods to the regenerator is discussed.  相似文献   

15.
研究了谐振管一端受活塞声源激励,另一端刚性封闭条件下,管道形状对热声发动机谐振管内部非线性声场的影响。基于流体力学基本方程建立了渐变截面谐振管内一维非线性声场的模型,考虑了黏性耗散及非线性效应的影响。利用伽辽金法数值求解了该模型的速度势方程,分析了谐振管形状、活塞振动速度及激励频率对管内声场的影响。将双曲形、指数形、锥形、正弦形等四种变截面谐振管内的非线性声场与圆柱形直管的情况进行了比较。结果反映了谐振管内声场的压力波动受活塞振动速度及谐振管形状的影响;显示了当活塞振动幅度较大时,谐振管内出现的波形畸变、频率曲线偏移、共振频率滞后等非线性现象;揭示了变截面谐振管在抑制管内的高阶谐波及提高压比等方面的优越性。   相似文献   

16.
Miwa M  Sumi T  Biwa T  Ueda Y  Yazaki T 《Ultrasonics》2006,44(Z1):e1527-e1529
We built and tested a double-loop thermoacoustic cooler consisting of an engine-loop, a branch resonator, and a cooler-loop. The cooling power of 6.4 W was obtained at the cooling temperature of 0 degrees C, when the input heat power of 416 W was supplied to the engine-loop. We measured the acoustic power and found that the output power emitted from the engine-loop was 12 W, and that the input acoustic power entering the cooler-loop was 6 W.  相似文献   

17.
A heat-driven thermoacoustic refrigerator has been designed and tested. A detailed thermal model of the device is presented. Energy balances within the system are discussed using external, heat exchanger, and stack control volumes in order to clarify the relationships of work and heat fluxes below and above onset. Thermal modeling is discussed as a tool for performance analysis as well as for determining system heat losses and finding input heat flows required by a thermoacoustic code. A method of using the control volume balance equations to find stack work and device efficiencies is presented. Experimental measurements are compared to DELTAE thermoacoustic modeling predictions. Modeling results show that viscous losses within the system have a significant impact on the device performance as well as on the ability of DELTAE to accurately predict performance. Modeling has led to an understanding of system performance and highlighted loss sources that are areas for improvement in a redesign.  相似文献   

18.
Linear thermoacoustic theory is currently well accepted for simulating thermoacoustic systems, and correction is used to reduce the discrepancy between calculations and experimental results for turbulent flow. In order to calculate passive tube systems and make linear thermoacoustic theory coincide closely with experiments, a passive network model based on fluid network theory is derived. An amendment method is proposed to further correct for turbulence by amending thermal and viscous penetration depths when the ratio of the tube radius to the viscous penetration depth R/δv is large. The experiments have been done to verify the model in the acoustic amplifier, Helmholtz resonator, and inertance tube. In addition, the mechanisms of such tubes are further analyzed based on the model.  相似文献   

19.
A thermoacoustic-Stirling heat engine: detailed study   总被引:1,自引:0,他引:1  
A new type of thermoacoustic engine based on traveling waves and ideally reversible heat transfer is described. Measurements and analysis of its performance are presented. This new engine outperforms previous thermoacoustic engines, which are based on standing waves and intrinsically irreversible heat transfer, by more than 50%. At its most efficient operating point, it delivers 710 W of acoustic power to its resonator with a thermal efficiency of 0.30, corresponding to 41% of the Carnot efficiency. At its most powerful operating point, it delivers 890 W to its resonator with a thermal efficiency of 0.22. The efficiency of this engine can be degraded by two types of acoustic streaming. These are suppressed by appropriate tapering of crucial surfaces in the engine and by using additional nonlinearity to induce an opposing time-averaged pressure difference. Data are presented which show the nearly complete elimination of the streaming convective heat loads. Analysis of these and other irreversibilities show which components of the engine require further research to achieve higher efficiency. Additionally, these data show that the dynamics and acoustic power flows are well understood, but the details of the streaming suppression and associated heat convection are only qualitatively understood.  相似文献   

20.
回热器的热声直流模型及其效应研究   总被引:2,自引:0,他引:2  
本文由基本的守恒方程出发,获得了能描述回热器存在声直流时的非线性动力学模型及由此而导致的非线性时均热力学效应。根据所得到的模型,考察了声直流对临界声功产生率温度梯度、回热器温度分布以及脉冲管制冷性能的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号