首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 195 毫秒
1.
This paper shows analytical solutions for compression wave and for steady-state oscillating flow in a pipe with a circular cross section. We considered the compression wave to be one of fluid phenomena, and paid our attention to the equation of fluid motion and of continuity. Pressure and flow velocity are directly treated in analytical solutions. Not only either of them but also flow rate may be chosen as an input and outputs by easy rearrangement of the formulas. This paper enables us to express various behavior of the compression wave by using analytical solutions with the phase velocity and the spatial absorption coefficient. Those analytical solutions enable us to reduce computation time and analysis cost on not only duct acoustics but also water hammer and combustion instabilities. Of course, our formulas may contribute to designing of microdevices such as MEMS strongly influenced by wall-viscosity.  相似文献   

2.
LES based on explicit filtering is used to study the shock train phenomenon in turbulent supersonic diffuser flows with circular cross-section and isothermal wall with an incoming pipe flow at friction Reynolds number 245 and centerline Mach number 1.7. Alternate regions of compression and expansion are found in the shock train which is followed by a shock-free ‘mixing’ region as observed in experiments and simulations in the literature. Turbulence amplification and local peaks in pressure-dilatation correlation are observed in the vicinity of the shocks. Low-frequency oscillations of the shock train are also observed.  相似文献   

3.
本文建立了环路型振荡流热管物理数学模型。数值计算结果表明,汽泡的交替膨胀和压缩使管内工质维持振荡运动,热管冷却端的散热情况是影响振荡流热管内部振荡运动的重要因素。热管内部振荡运动受倾角、充液率和加热功率影响,其变化趋势与前期实验结果基本一致。热管内脉动运动愈剧烈,热管的传热性能愈好。  相似文献   

4.
Three-dimensional (3D) direct numerical simulations (DNS) of the viscous incompressible fluid flow through a helical pipe with circular cross section were performed. The flow is governed by three parameters: the Dean number (or the Reynolds number), curvature, and torsion. First, we obtained steady solutions by steady 3D calculations, where dual solutions were found, one was uniform in the pipe axial direction and the other varied very slowly, if torsion exceeded a critical value. Then, the instability of the steady solutions obtained was studied by unsteady 3D calculations. We obtained critical Reynolds numbers of steady to unsteady transition by observing the behaviors of the unsteady solutions. The present results of the critical Reynolds number nearly agreed with those by the 2D linear stability analysis (Yamamoto et al. [9]) except for the lowest critical Reynolds number region, where the present study gave the critical Reynolds number much less than that obtained by the 2D linear stability analysis. We found the vortical structures in the form of a standing wave slightly above the marginal instability state, which is a trigger of explosive 3D instability.  相似文献   

5.
李印峰  尹世忠  M.Vázquez 《物理学报》2005,54(7):3391-3396
采用阻抗法测定了不同磁结构的软磁丝状样品(非晶及纳米晶合金)的环向磁导率随环向磁场 强度和频率的变化. 按照Chen等的理论公式计算了样品的环向磁化曲线,结果发现,这一实 验原理公式对具有较大损耗的磁化过程并不适用. 因此,将其发展给出了更一般情况下的理 论公式. 此外,通过分析复数磁导率对环向磁场的依赖关系,确定了两类不同畴结构样品的 不同的环向矫顽力机理. 研究了交流频率对磁化过程的影响. 关键词: 非晶和纳米晶软磁丝 阻抗 环向磁化曲线  相似文献   

6.
陈震  黄卡玛 《中国物理 B》2010,19(10):105201-105201
This paper studies Rabinovitch’s compression experiments on granite and chalk and proposes an oscillating dipole model to analyse and simulate the electromagnetic radiation phenomenon caused by fracture of rocks. Our model assumes that the electromagnetic radiation pulses are initiated by vibrations of the charged rock grains on the tips of the crack. The vibrations of the rock grains are stimulated by the pulses of the cracks. Our simulations show comparable results with Rabinovitch’s compression experiments. From the simulation results, it verifies an assumption that the crack width is inversely proportional to the circular frequency electromagnetic radiation, which is presented by Rabinovitch et al. The simulation results also imply that, by using our oscillating dipole model together with Rabinovitch’s two equations about the crack length and crack width, we can quantitatively analyse and simulate the electromagnetic radiation phenomenon, which is induced from the fracture of the rocks.  相似文献   

7.
本文通过振荡流热管可视化实验,研究热管传热性能与流型的变化。实验中可观察到,振荡热管内工质运动通常处于“间歇-振荡”交替运行的状态。随加热功率的增大,间歇时间所占比例逐步减小。随着加热功率的增大,热管内的流型也发生相应变化,实验中主要观察到了泡状流、塞状流、环状流、局部波状流等多种流型。汽泡的生成、长大、聚合、分离和湮...  相似文献   

8.
This paper describes the noise generation in an exhaust system of a reciprocating engine and focuses on the noise generated by shock/vortex interaction. The pulsating flow through the exhaust pipe consists of the compression and expansion wave, shock wave being generated by the non-linearity of the compression wave at its head. The jet noise is produced when the pulsating flow is discharged from the pipe end into atmosphere. The numerical simulation based on a finite difference method and experiment were made, the result of both of them being compared. First, the flow field in the pipe was obtained to easily discuss the characteristic of the pulsating jet in terms of the pressure history in the pipe. The jet structure was visualized by using schlieren and shadowgraph techniques. Sound pressure measurements at various locations were made in order to survey the directivity of the noise. The comparison between the result of numerical calculation and experiment showed a good agreement. A noise source related to shock/vortex interaction was confirmed by the numerical study clearly.  相似文献   

9.
G. E. Volovik 《JETP Letters》2005,82(10):624-627
In the geometry of the circular hydraulic jump, the velocity of the liquid in the interior region exceeds the speed of the capillary-gravity waves (ripplons), whose spectrum is “relativistic” in the shallow water limit. The velocity flow is radial and outward, and thus the relativistic ripplons cannot propagate into the interior region. In terms of the effective 2 + 1 dimensional Painlevé-Gullstrand metric appropriate for the propagating ripplons, the interior region imitates a white hole. The hydraulic jump represents the physical singularity at the white-hole horizon. The instability of the vacuum in the ergoregion inside the circular hydraulic jump and its observation in recent experiments on superfluid 4He by Rolley et al. [3] are discussed.  相似文献   

10.
We analyze the angle-of-arrival variance of an expanded and collimated laser beam once it has traveled through an indoor convective turbulence. A continuous position detector is set at the focus of a lens collecting the laser beam. The effect of the different turbulent scales, between the inner and the outer scales, is studied by changing the diameter of a circular pupil before the collector lens. The experimental optical setup follows the design introduced by Masciadri and Vernin [Appl. Opt., 36(6) (1997) 1320]. Tilt data measurements are studied using the fractional Brownian motion model for the turbulent wave-front phase introduced in a previous paper [Pérez et al., J. Opt. Soc. Am. A 21(10) (2004) 1962]. The Hurst exponents associated to different strengths of turbulence are obtained from the here proposed D2H−2 dependence.  相似文献   

11.
ABSTRACT

The universality and mathematical physical structure of wall-bounded turbulent flows is a topic of discussions over many decades. There is no agreement about questions like what is the physical mean flow structure, how universal is it, and how universal are theoretical concepts for local and global flow variations. These questions are addressed by using latest direct numerical simulation (DNS) data at moderate Reynolds numbers Re and experimental data up to extreme Re. The mean flow structure is explained by analytical models for three canonical wall-bounded turbulent flows (channel flow, pipe flow, and the zero-pressure gradient turbulent boundary layer). Thorough comparisons with DNS and experimental data provide support for the validity of models. Criteria for veritable physics derived from observations are suggested. It is shown that the models presented satisfy these criteria. A probabilistic interpretation of the mean flow structure shows that the physical constraints of equal entropies and equally likely mean velocity values in a region unaffected by boundary effects impose a universal log-law structure. The structure of wall-bounded turbulent flows is much more universal than previously expected. There is no discrepancy between local logarithmic velocity variations and global friction law and bulk velocity variations. Flow effects are limited to the minimum: the difference of having a bounded or unbounded domain, and the variation range of mean velocity values allowed by the geometry.  相似文献   

12.
Bubble coalescence and breakup play important roles in physical-chemical processes and bubbles are treated in two groups in the interfacial area transport equation (IATE). This paper presents a review of IATE for bubble coalescence and breakup to model five bubble interaction mechanisms: bubble coalescence due to random collision, bubble coalescence due to wake entrainment, bubble breakup due to turbulent impact, bubble breakup due to shearing-off, and bubble breakup due to surface instability. In bubble coalescence, bubble size, velocity and collision frequency are dominant. In bubble breakup, the influence of viscous shear, shearing-off, and surface instability are neglected, and their corresponding theory and modelling are rare in the literature. Furthermore, combining turbulent kinetic energy and inertial force together is the best choice for the bubble breakup criterion. The reviewed one-group constitutive models include the one developed by Wu et al., Ishii and Kim, Hibiki and Ishii, Yao and Morel, and Nguyen et al. To extend the IATE prediction capability beyond bubbly flow, two-group IATE is needed and its performance is strongly dependent on the channel size and geometry. Therefore, constitutive models for two-group IATE in a three-type channel (i.e., narrow confined channel, round pipe and relatively larger pipe) are summarized. Although great progress in extending the IATE beyond churn-turbulent flow to churn-annual flow was made, there are still some issues in their modelling and experiments due to the highly distorted interface measurement. Regarded as the challenges to be addressed in the further study, some limitations of IATE general applicability and the directions for future development are highlighted.  相似文献   

13.
Experimental results obtained over more than a century have shown that laminar flow in a circular pipe becomes naturally turbulent at a critical Reynolds number of Re approximately 2000. In this Letter a theoretical explanation, based on the minimum energy of an axisymmetric deviation (from the developed pipe flow profile), is suggested for this critical value. It is shown that for Re>1840 the minimum energy of the deviation, associated with the central part of the pipe, becomes a global minimum for triggering secondary instabilities. For Re<1840 the global minimum energy deviation is located next to the pipe wall. Previous experimental observations support this explanation.  相似文献   

14.
We present the results of an experimental investigation into the nature and structure of turbulent pipe flow at moderate Reynolds numbers. A turbulence regeneration mechanism is identified which sustains a symmetric traveling wave within the flow. The periodicity of the mechanism allows comparison to the wavelength of numerically observed exact traveling wave solutions and close agreement is found. The advection speed of the upstream turbulence laminar interface in the experimental flow is observed to form a lower bound on the phase velocities of the exact traveling wave solutions. Overall our observations suggest that the dynamics of the turbulent flow at moderate Reynolds numbers are governed by unstable nonlinear traveling waves.  相似文献   

15.
H. Gül 《实验传热》2013,26(1):24-37
An experimental study was performed focusing on heat transfer and friction coefficient associated with turbulent oscillating tube flow. For this goal an oscillating mechanism was designed. Experiments were conducted for the low oscillating frequency in the range of 0.008–1.988 Hz and dimensionless amplitude was chosen as X0 = 0.3, 0.6, and 0.9. Reynolds number was changed from 0.5 × 104 to 2.5 × 104. The bulk temperature of the fluid at the exit of the oscillating section was fond to be increasing with oscillating frequency and amplitude. For the oscillating cases, heat transfer enhancement is obtained 52% for f = 1.988 s?1, 40% for f = 1.320 s?1, and 28% for f = 0.008 s?1, in comparison with the smooth pipe at the highest Reynolds number. The results also showed that Nusselt number and friction coefficient also increased with increasing frequency and amplitude.  相似文献   

16.
高超声速飞行器前缘流固耦合计算方法研究   总被引:5,自引:0,他引:5       下载免费PDF全文
聂涛  刘伟强 《物理学报》2012,61(18):184401-184401
对高超声速流场和结构温度场进行了耦合计算分析, 同时基于准静态假设对结构应力进行了分析. 流场部分采用基于非定常Navier-Stokes (N-S)方程的有限体积法, 湍流模型采用SST k-ω 模型, 固体部分采用基于非稳态热传导方程的有限元法, 同时基于准静态假设对固体结构的应力应变进行了分析. 在流固交界面处, 高速流体从固体结构得到温度边界条件, 固体结构从高速流体得到热流边界条件, 从而实现了流场和固体温度场的紧耦合计算.通过与超声速无限长圆管绕流试验结果进行对比, 验证了该方法的可靠性. 同时对二维圆管结构在气动加热过程中的温度、应力等的变化进行了比较详细的分析. 研究结果表明: 随着气动加热时间的推进, 由于圆管结构的高温区在不断扩大, 导致了结构的热变形在不断地增大; 圆管最小变形区出现在θ为60°处; 同时研究发现在计算时间内圆管热变形对外部流场的影响可以忽略不计.  相似文献   

17.
Flow visualization results for secondary flow phenomena at the exit of 90° and 180° bends and helically coiled pipes (1, 2 and 5 turns), (radius of curvatureR c=381 mm, inside pipe diameterd=37.5 mm, curvature ratiod/2R c=0.049) and in the downstream straight pipe (l/d=30) are presented to study the stabilizing (relaminarization) effect in curved pipes with fully developed entry turbulent air flow and the destabilizing (re-transition from laminar to turbulent flow) effect in the downstream straight region. The entry Reynolds numbers areRe=2200, 3200, 4300 and 5300). The related measurement results using a hot-film anemometer are presented for developing profiles of the time-mean streamwise velocity distribution and the axial turbulence intensity field in the 180° return bend and in the downstream straight pipe for Reynolds numbersRe=3200, 4300, 6300 and 8200. The time traces showing the output of the hot-film sensor are also presented for developing fluctuating velocity field in the 180° bend and in the downstream straight pipe for the same Reynolds number range. Some aspects of the relaminarization phenomena in curved pipes and the re-transition phenomena from laminar to turbulent flow in the downstream straight pipe are clarified by the present experimental investigation.  相似文献   

18.
In this paper we derive an accurate composite friction factor vs. Reynolds number correlation formula for laminar, transition and turbulent flow in smooth pipes. The correlation is given as a rational fraction of rational fractions of power laws which is systematically generated by smoothly connecting linear splines in log-log coordinates with a logistic dose curve algorithm. This kind of correlation seeks the most accurate representation of the data independent of any input from theories arising from the researchers’ ideas about the underlying fluid mechanics. As such, these correlations provide an objective metric against which observations and other theoretical correlations may be applied. Our correlation is as accurate, or more accurate, than other correlations in the range of Reynolds numbers in which the correlations overlap. However, our formula is not restricted to certain ranges of Reynolds numbers but instead applies uniformly to all smooth pipe flow data for which data is available. The properties of the classical logistic dose response curve are reviewed and extended to problems described by multiple branches of power laws. This extended method of fitting which leads to rational fractions of power laws is applied to data of Marusic and Perry (1995) [1] for the velocity profile in a boundary layer on a flat plate with an adverse pressure gradient, to data of Nikuradse (1932) [2] and McKeon et al. (2004) [3] on friction factors for flow in smooth pipes and to the data of Nikuradse [4] for effectively smooth pipes.  相似文献   

19.
From the study of viscous flow it is known that certain time-dependent laminar problems, such as the impulsively started flat plate and the diffusion of a vortex sheet, possess self-similar solutions. Previous studies of turbulent channel and pipe flows accelerating between two steady states have shown that the flow field evolves in three distinct stages. Furthermore, recent direct numerical simulations have shown that the perturbation velocity, i.e. the surplus velocity from the initial value, in an impulsively accelerating turbulent channel and pipe flow also possesses a self-similar distribution during the initial stage. In here, these results are developed analytically and it is shown that accelerating flows in which the centreline velocity develops as Uc(t) = U0(t/t0)m will possess a self-similar velocity distribution during the initial stage. The displacement thickness of the perturbation velocity is shown to be dependent only on the type of acceleration, and not on the initial Reynolds number, the acceleration rate or the change in Reynolds number. The derived formulas are verified with good agreement against measurements performed in a linearly accelerating turbulent pipe flow and with data from channel flow simulations.  相似文献   

20.
Gan Gao 《Optics Communications》2009,282(22):4464-443
We find that, in the improvement [S.J. Qin et al., Phys. Lett. A 357 (2006) 101] of the multiparty quantum secret sharing [Z.J. Zhang et al., Phys. Rev. A 71 (2005) 044301], Charlie can solely obtain Alice’s secret messages without Bob’s helps. In other words, the improved secret sharing scheme is still insecure. In the end, we further modify Qin et al. improved three-party quantum secret sharing scheme and make it really secure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号