首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ZrAlON films were fabricated using the reactive ablation of a ceramic ZrAlO target in N2 ambient by pulsed laser deposition (PLD) technique. ZrAlON films were deposited directly on n-Si(100) substrates and Pt coated silicon substrates, respectively, at 500 °C in a 20 Pa N2 ambient, and rapid thermal annealed (RTA) in N2 ambient at 1000 °C for 1 min. Cross sectional high-resolution transmission electron microscopy (HRTEM) images clearly show that the ZrAlON/Si interface is atomically sharp without an interfacial layer, and the films are completely amorphous. The electron diffraction pattern of TEM also indicates the amorphous structure of the RTA ZrAlON film. X-ray photoelectron spectroscopy (XPS) measurement was performed to confirm the effective incorporation of nitrogen with a content of about 6 at. %, and to reveal the N–O bonding in ZrAlON films. The dielectric constant of amorphous ZrAlON was determined to be about 18.2 which is more than 16.8 for ZrAlO by measuring the Pt/films/Pt capacitors. Capacitance–voltage (C–V) measurements show that a small equivalent oxide thickness (EOT) of 1.03 nm for 4 nm ZrAlON film on the n-Si substrate with a leakage current of 28.7 mA/cm2 at 1 V gate voltage was obtained. PACS 77.55.+f; 81.15.Fg; 73.40.Qv  相似文献   

2.
SrZrO3 (SZO) thin films have been prepared on Pt-coated silicon substrates and directly on Si substrates by pulsed laser deposition (PLD) using a ZrSrO target at a substrate temperature of 400 °C in 20 Pa oxygen ambient. X-ray –2 scans showed that the as-deposited films remain amorphous at a substrate temperature of 400 °C. The dielectric constant of SZO has been determined to be in the range 24–27 for the Pt/SZO/Pt structure. Capacitance–voltage (C–V) characteristics of a metal-oxide-semiconductor (MOS) structure for SZO films deposited in 20 Pa oxygen ambient and 20 Pa nitrogen ambient (SZON) indicated that incorporation of nitrogen during the substrate heating and film deposition can suppress the formation of an interfacial SiO2 layer, and the SZON films have a lower equivalent oxide thickness (EOT) than that of the SZO films. However, the leakage current of the SZON films is larger than that of the SZO films. The EOT is about 1.2 nm for a 5-nm SZON film deposited at 400 °C. The leakage-current characteristics of as-deposited SZON films and SZON films post-annealed in oxygen ambient by rapid thermal annealing (RTA) have been studied comparatively. The films post-annealed with RTA have a lower leakage current than the as-deposited SZON films. Optical transmittance measurements showed that the band gap of the films is about 5.7 eV. It is proposed that SrZrO3 films prepared at 400 °C are potential materials for alternative high-k gate-dielectric applications. PACS 77.84.Bw; 77.84.-s; 77.55.+f  相似文献   

3.
Thermal stability, interfacial structures and electrical properties of amorphous (La2O3)0.5(SiO2)0.5 (LSO) films deposited by using pulsed laser deposition (PLD) on Si (1 0 0) and NH3 nitrided Si (1 0 0) substrates were comparatively investigated. The LSO films keep the amorphous state up to a high annealing temperature of 900 °C. HRTEM observations and XPS analyses showed that the surface nitridation of silicon wafer using NH3 can result in the formation of the passivation layer, which effectively suppresses the excessive growth of the interfacial layer between LSO film and silicon wafer after high-temperature annealing process. The Pt/LSO/nitrided Si capacitors annealed at high temperature exhibit smaller CET and EOT, a less flatband voltage shift, a negligible hysteresis loop, a smaller equivalent dielectric charge density, and a much lower gate leakage current density as compared with that of the Pt/LSO/Si capacitors without Si surface nitridation.  相似文献   

4.
Zirconium silicate films with high thermal stability and good electrical properties have been prepared on n-Si(100) substrates and commercially available Pt-coated Si substrates to fabricate metal–insulator–metal (MIM) structures by the pulsed laser deposition (PLD) technique using a Zr0.69Si0.31O2- ceramic target. Rapid thermal annealing (RTA) in N2 was performed. X-ray diffraction indicated that the films annealed at 800 °C remained amorphous. Differential thermal analysis revealed that amorphous Zr silicate crystallized at 830 °C. X-ray photoelectron spectroscopy showed that RTA annealing of Zr silicate films at 900 °C led to phase separation. The dielectric constant has been determined to be about 18.6 at 1 MHz by measuring the Pt/Zr silicate/Pt MIM structure. The equivalent oxide thicknesses (EOTs) and the leakage-current densities of films with 6-nm physical thickness deposited in O2 and N2 ambient were investigated. An EOT of 1.65 nm and a leakage current of 31.4 mA/cm2 at 1-V gate voltage for the films prepared in N2 and RTA annealed in N2 at 800 °C were obtained. An amorphous Zr-rich Zr silicate film fabricated by PLD looks to be a promising candidate for future high-k gate-dielectric applications. PACS 77.55.+f; 81.15.Fg; 73.40.Qv  相似文献   

5.
The thermal stability and dielectric properties of amorphous CaZrOx film prepared by pulsed laser deposition (PLD) have been investigated. X-ray diffraction (XRD) investigation shows that CaZrOx film still remains amorphous after rapid thermal annealing at 700 °C for 10 min. Differential thermal analysis (DTA) indicates that the crystallization temperature of CaZrOx film is about 729.53 °C, which is significantly higher than that of amorphous ZrO2 films prepared at the similar conditions. High-resolution transmission electron microscopy (HRTEM) and X-ray photon spectroscopy (XPS) analysis reveal there exists a Si-O transition layer between the CaZrOx film and Si substrate. The permittivity of CaZrOx film is about 10.5 (at 1 MHz) by measuring a Pt/CaZrOx/Pt MIM structure. Under the optimized conditions, a small EOT=0.91 nm and a leakage current density of 125 mA/cm2 at 1 V gate voltage were obtained. The enhanced thermal stability and improved electrical characteristics suggest that the amorphous CaZrOx film may be an attractive gate dielectric alternative for next generation MOS field effect transistor applications. PACS 77.55.+f; 81.15.Fg; 73.40.Qv  相似文献   

6.
As potential gate dielectric materials, pseudobinary oxide (TiO2)x(Al2O3)1-x (0.1≤x≤0.6) films (TAO) were deposited on Si (100) substrates by pulsed-laser deposition method and studied systematically via various measurements. By a special deposition process, including two separate steps, the TAO films were deposited in the form of two layers. The first layer was deposited at room temperature and the second layer was completed at the substrate temperature of 400 °C. Detailed data show that the properties of the TAO films are closely related to the ratio between TiO2 and Al2O3. The existence of the first layer deposited at room temperature can effectively restrain the formation of the interfacial layer. And according to the results of X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy performed on the films, no other information belonging to the silicon oxide could be observed. For the (TiO2)0.4(Al2O3)0.6 film, the best result has been achieved among all samples and its dielectric constant is evaluated to be about 38. It is valuable for the amorphous TAO film as one of the promising dielectric materials for high-k gate dielectric applications. PACS 77.55.+f; 73.40.Qv; 81.15.Fg  相似文献   

7.
L. Shi 《Applied Surface Science》2007,253(7):3731-3735
As a potential gate dielectric material, the La2O3 doped SiO2 (LSO, the mole ratio is about 1:5) films were fabricated on n-Si (0 0 1) substrates by using pulsed laser deposition technique. By virtue of several measurements, the microstructure and electrical properties of the LSO films were characterized. The LSO films keep the amorphous state up to a high annealing temperature of 800 °C. From HRTEM and XPS results, these La atoms of the LSO films do not react with silicon substrate to form any La-compound at interfacial layer. However, these O atoms of the LSO films diffuse from the film toward the silicon substrate so as to form a SiO2 interfacial layer. The thickness of SiO2 layer is only about two atomic layers. A possible explanation for interfacial reaction has been proposed. The scanning electron microscope image shows the surface of the amorphous LSO film very flat. The LSO film shows a dielectric constant of 12.8 at 1 MHz. For the LSO film with thickness of 3 nm, a small equivalent oxide thickness of 1.2 nm is obtained. The leakage current density of the LSO film is 1.54 × 10−4 A/cm2 at a gate bias voltage of 1 V.  相似文献   

8.
The thermal stability and the electrical properties of HfO2 and Hf–aluminate films prepared by the pulsed laser deposition technique have been investigated by X-ray diffraction, differential thermal analysis, capacitance–voltage correlation, leakage-current measurements and high-resolution transmission electron microscopy observation, respectively. A crystallization transformation from HfO2 amorphous phase to polycrystalline monoclinic structure occurs at about 500 °C. In contrast, the amorphous structure of Hf–aluminate films remains stable at higher temperatures up to 900 °C. Rapid thermal annealing at 1000 °C for 3 min leads to a phase separation in Hf–aluminate films. Tetragonal HfO2(111) is predominant, and Al2O3 separates from Hf–aluminate and is still in the amorphous state. The dielectric constant of amorphous HfO2 and Hf–aluminate films was determined to be about 26 and 16.6, respectively, by measuring a Pt/dielectric film/Pt capacitor structure. A very small equivalent oxide thickness (EOT) value of 0.74 nm for a 3-nm physical thickness Hf–aluminate film on a n-Si substrate with a leakage current of 0.17 A/cm2 at 1-V gate voltage was obtained. The interface at Hf–aluminate/Si is atomically sharp, while a thick interface layer exists between the HfO2 film and the Si substrate, which makes it difficult to obtain an EOT of less than 1 nm. PACS 77.55.+f; 81.15.Fg; 73.40.Qv  相似文献   

9.
Highly c-axis-oriented Sr3Bi4Ti6O21 (SBTi) thin films were fabricated on Pt-coated Si substrates by pulsed laser deposition (PLD). The structures were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). No peaks of SrTiO3 (STO) could be detected in the XRD pattern, indicating the existence of the SBTi single phase. Good ferroelectric hysteresis loops of the films with Pt electrodes were obtained. With an applied field of 400 kV/cm, the measured remanent polarization (Pr) and coercive field (Ec) values were 4.1 C/cm2 and 75 kV/cm respectively. The films showed little fatigue after 2.22×109 switching cycles: the nonvolatile polarizations decreased by less than 5% of the initial values. The dielectric constant and the loss tangent of the films were measured to be 363 and 0.04 at 100 kHz. These results might be advantageous for nonvolatile ferroelectric random access memory (NVFRAM) and dynamic random access memory (DRAM). PACS 77.84.Dy; 77.22.-d; 68.55.Jk  相似文献   

10.
Ferroelectric and dielectric properties of bilayered ferroelectric thin films, SrBi4Ti4O15 grown on Bi4Ti3O12, were investigated. The thin films were annealed at 700°C under oxygen atmosphere. The bilayered thin films were prepared on a Pt(111)/Ti/SiO2/Si substrate by a chemical solution deposition method. The dielectric constant and dielectric loss of the bilayered thin films were 645 and 0.09, respectively, at 100 kHz. The value of remnant polarization (2P r) measured from the ferroelectric thin film capacitors was 60.5 μC/cm2 at electric field of 200 kV/cm. The remnant polarization was reduced by 22% of the initial value after 1010 switching cycles. The results showed that the ferroelectric and dielectric properties of the SrBi4Ti4O15 on Bi4Ti3O12 ferroelectric thin films were better than those of the SrBi4Ti4O15 grown on a Pt-coated Si substrate suggesting that the improved properties may be due to the different nucleation and growth kinetics of SrBi4Ti4O15 on the c-axis-oriented Bi4Ti3O12 layer or on the Pt-coated Si substrate.  相似文献   

11.
Leakage currents through Al/ZrO2/SiO2/n-Si metal-insulator-semiconductor (MIS) capacitors were studied. Thin SiO2 films were chemically grown on monocrystalline phosphorous doped silicon wafers. Zirconia films with thicknesses of 15 and 50 nm were deposited by radio frequency (rf) magnetron sputtering and, then, annealed in oxygen ambient at 850 C, for 1 h. The dielectric constant of the sputtered and annealed ZrO2 layer was of about 17.8. The equivalent oxide thickness (EOT) of the stack 15 nm and 50 nm-ZrO2/SiO2 structure was estimated to be 3.2 nm and 10.7 nm, respectively. The temperature dependence of the leakage currents was explained by Poole-Frenkel (PF) conduction mechanism. Shallow trap levels in the studied structure of about 0.2 eV and 0.46 eV were calculated. The existence of A and D-defects, due to the sputtering and high temperature annealing in oxygen, was suggested.  相似文献   

12.
Organic thin film transistors (OTFTs) were fabricated using pentacene as the active layer with two different gate dielectrics, namely SiO2 and poly(methyl methacrylate) (PMMA), in top contact geometry for comparative studies. OTFTs with SiO2 as dielectric and gold deposited on the rough side of highly doped silicon (n+-Si) as gate electrode exhibited reasonable field effect mobilities. To deal with poor stability and large leakage currents between source/drain and gate electrodes in these devices, isolated OTFTs with reduced source/drain contact area were fabricated by selective deposition of pentacene on SiO2/PMMA through shadow mask. This led to almost negligible leakage currents and no degradation in electrical performance even after 14 days of storage under ambient conditions. But, the field effect mobilities obtained were lower than 10−3 cm2 V−1 s−1, whereas by using PMMA as gate dielectric with chromium deposited on the polished side of n+-Si as gate electrode, improved field effect mobilities (>0.02 cm2 V−1 s−1) were obtained. PMMA-based OTFTs also exhibited lower leakage currents and reproducible output characteristics even after 30 days of storage under ambient conditions.   相似文献   

13.
Bi3.25Pr0.75Ti3O12 (BPT) ferroelectric thin films have been prepared by chemical solution deposition on platinized Si substrates. Well-crystallized BPT films can be achieved by 600 °C rapid thermal annealing. The film surface is smooth and crack-free, composed of uniform spherical grains around 90–100 nm in diameter. The electrical properties of Pt/BPT/Pt thin film capacitors were characterized by hysteresis and impedance measurements. The remanent polarization of 700 °C annealed BPT films is around 20 C/cm2 at 120-kV/cm stimulus field. The dielectric constant is around 380 at 10 kHz, 100-mV amplitude. The remanent polarization of BPT film showed a slight reduction, 10% of its original value, after 2.8×109 cycles, while a 30% reduction of non-volatile polarization was observed. PACS 81.15.-z; 77.55.+f; 77.22.Gm  相似文献   

14.
Bi3.95Er0.05Ti3O12 (BErT) thin films were prepared on Pt/Ti/SiO2/Si and indium-tin-oxide (ITO)-coated glass substrates at room temperature by pulsed laser deposition. These thin films were amorphous with uniform thickness. Excellent dielectric characteristics have been confirmed. The amorphous BErT thin films deposited on the Pt/Ti/SiO2/Si and ITO-coated glass substrates exhibited almost the same dielectric constant of 52 with a low dielectric loss of less than 0.02 at 1 kHz. Meanwhile, the dielectric properties of the thin films had an excellent bias voltage stability and thermal stability. The amorphous BErT thin films might have potential applications in microelectronic and optoelectronic devices.  相似文献   

15.
《Physics letters. A》2020,384(11):126232
In order to prepare good quality Pb(Zr,Ti)O3 (PZT) thin films, we consider the method of alternately growing PZT thin films on Pt (111)/Ti/SiO2/Si (100) substrates by pulsed laser deposition (PLD) and sol-gel. In this work, we conducted comparative experiments on different film preparation methods, and 1.0 um thick PZT film was grown on platinized silicon wafers by an alternate PLD and sol-gel method. The microstructure and electrical properties of the films is analyzed. Through the study of X-ray diffraction, SEM, AFM, PFM, and ferroelectric testing, it is found that the alternating growth of a film by the alternate PLD and sol-gel method has good compactness, excellent ferroelectric properties, and smaller leakage current compared to film prepared by the sol-gel method alone.  相似文献   

16.
Well-crystallized barium metaniobate (BaNb2O6) thin films were fabricated on fused quartz substrates by pulsed laser deposition. The influence of substrate temperature and oxygen pressure on the crystal structure and preferred orientation were studied to understand the growth mechanism of BaNb2O6 thin films. The films formed at 600 °C at an oxygen pressure of 100 mTorr exhibited predominantly the orthorhombic (040) orientation, and turned to the orthorhombic (230) orientation at 800 °C. It was found that (220)-oriented hexagonal thin films were formed at 600 °C at an oxygen pressure less than 50 mTorr. The dielectric constant of the BaNb2O6 thin films was measured by scanning microwave microscopy (SMM). Preferentially (230)-oriented orthorhombic and (220)-oriented hexagonal BaNb2O6 thin films were shown to have significantly enhanced dielectric constants of 47.8 and 56.7, respectively. This could be attributed to the dependence of the dielectric constant on crystallographic orientation. PACS 77.55.+f; 77.84.Dy  相似文献   

17.
Amorphous aluminate YAlO3 (YAO) thin films on n-type silicon wafers as gate dielectric layers of metal–oxide–semiconductor devices are prepared by pulsed laser deposition. As a comparison, amorphous aluminate LaAlO3 (LAO) thin films are also prepared. The structural and electrical characterization shows that the as-prepared YAO films remain amorphous until 900 °C and the dielectric constant is ∼14. The measured leakage current of less than 10-3 A/cm2 at a bias of VG=1.0 V for ∼40-nm-thick YAO and LAO films obeys the Fowler–Nordheim tunneling mechanism. It is revealed that the electrical property can be significantly affected by the oxygen pressure during deposition and post rapid thermal annealing, which may change the fixed negative charge density at the gate interface. PACS 77.55.+f; 81.15.Fg; 81.40.Ef  相似文献   

18.
HfO2 films 5 nm thick grown on Si(100) substrates by the methods of MOCVD hydride epitaxy and atomic layer deposition (ALD) are studied using X-ray photoelectron spectroscopy combined with Ar+ ion etching and X-ray reflectometry. It is found that (i) the ALD-grown HfO2 films are amorphous, while the MOCVD-grown films show signs of a crystal structure; (ii) the surface of the ALD-grown films is more prone to contamination and/or is more reactive; and (iii) the amount of interfacial silicon dioxide in the case of the MOCVD-grown film is greater than in the case of the films synthesized by ALD. It is also shown that the argon ion etching of the HfO2 film results in the formation of a metallic hafnium layer at the interface. This indicates that HfO2 can be used not only as a gate dielectric but also as a material suitable for fabricating nanodimensional conductors by direct decomposition.  相似文献   

19.
Pb(Zr0.52Ti0.48)O3 (PZT)/LaNiO3 (LNO) thin films with highly (100) out of plane orientation were produced on SiO2/Si(100) and alkaline earth aluminosilicate glass substrates by pulsed laser deposition (PLD). Orientations of both PZT and LNO films were evaluated using X-ray diffraction. The pure (100)-oriented PZT/LNO films were obtained under optimized deposition conditions. Time of flight-secondary ion mass spectrometry analysis showed that LNO could effectively block interdiffusion between the PZT films and the substrates. Fairly smooth surfaces of the PZT films with roughness of about 4 nm were observed using an atomic force microscope. Cross sectional examination revealed that the films grew in columnar grains. The PZT films grown on both SiO2/Si and glass substrates demonstrated very good ferroelectric characteristic at room temperature with remnant polarization of up to 26 μC/cm2. PACS 79.20.DS; 77.84.DY; 78.70.Ck  相似文献   

20.
The high efficient antireflective down-conversion Y2O3:Bi, Yb films have been prepared successfully on Si(100) substrates by pulsed laser deposition (PLD) method, Upon excitation of ultraviolet photon varying from 300 to 400 nm, near-infrared emission of Yb3+ was observed for the film, can be efficiently absorbed by silicon (Si) solar cell. Most interestingly, there is a very low average reflectivity 1.46% for the incident light from 300 to 1100 nm. To the best of our knowledge, this is the lowest reflectance for the down-conversion thin films prepared by cost efficient method. The surface topography of the high efficient antireflective films can be controllably tuned through the substrate template regulation by optimizing process parameters. Besides, the results showed that there is a close relationship between luminescent property and morphology of the film. With the change of the surface morphology, the intensity of Bi3+ and Yb3+ emission peaks increase first and then decrease. The obtained results demonstrate that this film can enhance the Si solar cell efficiency through light trapping and spectrum shifting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号