首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
周彬  邹霞  张雄伟 《声学学报》2014,39(5):655-662
语音线性预测分析算法在噪声环境下性能会急剧恶化,针对这一问题,提出一种改进的噪声鲁棒稀疏线性预测算法。首先采用学生t分布对具有稀疏性的语音线性预测残差建模,并显式考虑加性噪声的影响以提高模型鲁棒性,从而构建完整的概率模型。然后采用变分贝叶斯方法推导模型参数的近似后验分布,最终实现噪声鲁棒的稀疏线性预测参数估计。实验结果表明,与传统算法以及近几年提出的基于l1范数优化的稀疏线性预测算法相比,该算法在多项指标上具有优势,对环境噪声具有更好的鲁棒性,并且谱失真度更小,因而能够有效提高噪声环境下的语音质量。   相似文献   

2.
吕钊  吴小培  张超  李密 《声学学报》2010,35(4):465-470
提出了一种基于独立分量分析(ICA)的语音信号鲁棒特征提取算法,用以解决在卷积噪声环境下语音信号的训练与识别特征不匹配的问题。该算法通过短时傅里叶变换将带噪语音信号从时域转换到频域后,采用复值ICA方法从带噪语音的短时谱中分离出语音信号的短时谱,然后根据所得到的语音信号短时谱计算美尔倒谱系数(MFCC)及其一阶差分作为特征参数。在仿真与真实环境下汉语数字语音识别实验中,所提算法相比较传统的MFCC其识别正确率分别提升了34.8%和32.6%。实验结果表明基于ICA方法的语音特征在卷积噪声环境下具有良好的鲁棒性。   相似文献   

3.
用于无监督语音降噪的听觉感知鲁棒主成分分析法   总被引:2,自引:0,他引:2       下载免费PDF全文
闵刚  邹霞  韩伟  张雄伟  谭薇 《声学学报》2017,42(2):246-256
针对现有稀疏低秩分解语音降噪方法对人耳听觉感知特性应用不充分、语音失真易被感知的问题,提出了一种用于语音降噪的听觉感知鲁棒主成分分析法。由于耳蜗基底膜对于频率感知具有非线性特性,该方法采用耳蜗谱图作为语噪分离的基础。此外,选用符合人耳听觉感知特性的板仓-斋田距离度量作为优化目标函数,在稀疏低秩建模过程中引入非负约束以使分解分量更符合实际物理含义,并在交替方向乘子法框架下推导了具有闭合解形式的迭代优化算法。文中方法在语音降噪时是完全无监督的,无需预先训练语音或噪声模型。多种类型噪声和不同信噪比条件下的仿真实验验证了该方法的有效性,噪声抑制效果较目前同类算法更为显著,且降噪后语音的可懂度和总体质量有所提高、至少相当。   相似文献   

4.
为了提高感知线性预测系数(PLP)在噪声环境下的识别性能,使用子带能量偏差减的方法,提出了一种基于子带能量规整的感知线性预测系数(SPNPLP)。PLP有效地集中了语音中的有用信息,在安静环境下自动语音识别系统使用PLP可以取得良好的识别率;但是在噪声环境中其识别性能急剧下降。通过使用能量偏差减的方法对PLP的子带能量进行规整,抑制背景噪声激励,提出了SPNPLP,增强自动语音识别系统在噪声环境下的鲁棒性。在一个语法大小为501的孤立词识别任务和一个大词表连续语音识别任务上做了测试,SPNPLP在这两个任务上,与PLP相比,汉字识别精度分别绝对提升了11.26%和9.2%。实验结果表明SPNPLP比PLP具有更好的噪声鲁棒性。   相似文献   

5.
针对低信噪比说话人识别中缺失数据特征方法鲁棒性下降的问题,提出了一种采用感知听觉场景分析的缺失数据特征提取方法。首先求取语音的缺失数据特征谱,并由语音的感知特性求出感知特性的语音含量。含噪语音经过感知特性的语音增强和对其语谱的二维增强后求解出语音的分布,联合感知特性语音含量和缺失强度参数提取出感知听觉因子。再结合缺失数据特征谱把特征的提取过程分解为不同听觉场景进行区分地分析和处理,以增强说话人识别系统的鲁棒性能。实验结果表明,在-10 dB到10 dB的低信噪比环境下,对于4种不同的噪声,提出的方法比5种对比方法的鲁棒性均有提高,平均识别率分别提高26.0%,19.6%,12.7%,4.6%和6.5%。论文提出的方法,是一种在时-频域中寻找语音鲁棒特征的方法,更适合于低信噪比环境下的说话人识别。   相似文献   

6.
提出了一种基于一致性自监督学习的鲁棒自动语音识别方法。该方法通过使用语音信号仿真技术,模拟一条语音在不同声学场景下的副本;在通过自监督学习方式学习语音表征的同时,极大化一条语音在不同声学环境下对应语音表征的相似性,从而获取到与环境干扰无关的语音表征方式,提高下游语音识别模型的性能。在远讲数据集CHiME-4和会议数据集AMI上的实验表明,所提的一致性自监督学习算法能够取得相比已有的wav2vec2.0自监督学习基线算法30%以上的识别词错误率下降。这表明,所提方法是一种获取噪声无关语音表征、提升鲁棒语音识别性能的有效方法。  相似文献   

7.
为了进一步提高在a稳定分布噪声背景下非线性自适应滤波算法的收敛速度,本文提出了一种新的基于p范数的核最小对数绝对差自适应滤波算法(kernel least logarithm absolute difference algorithm based on p-norm, P-KLLAD).该算法结合核最小对数绝对差算法和p范数,一方面利用最小对数绝对差准则保证了算法在a稳定分布噪声环境下良好的鲁棒性,另一方面在误差的绝对值上添加p范数,通过p范数和一个正常数a来控制算法的陡峭程度,从而提高该算法的收敛速度.在非线性系统辨识和Mackey-Glass混沌时间序列预测的仿真结果表明,本文算法在保证鲁棒性能的同时提高了收敛速度,并且在收敛速度和鲁棒性方面优于核最小均方误差算法、核分式低次幂算法、核最小对数绝对差算法和核最小平均p范数算法.  相似文献   

8.
偏度最大化多通道逆滤波语音去混响研究*   总被引:1,自引:1,他引:0       下载免费PDF全文
房间混响会降低语音质量和语音可懂度。高阶统计量是衡量非高斯性的重要参量,基于语音非高斯特性可实现语音去混响。本文提出一种基于高阶统计量的多通道语音去混响方法,该方法首次用多通道语音信号线性预测残差的三阶统计量偏度(Skewness)构造代价函数,以去混响重建信号线性预测残差的偏度最大化为目标自适应地更新逆滤波器;同时结合语音信号的产生模型,提出基于偏度准则的线性预测与房间脉冲响应逆滤波联合估计方法,进一步提高去混响算法性能。实验结果表明,该方法相较于已有的基于线性预测残差四阶统计量峰度(Kurtosis)的方法具有更好的去混响效果,且对噪声具有更强的鲁棒性。  相似文献   

9.
一种利用分布式传声器阵列的声源三维定位方法   总被引:3,自引:0,他引:3       下载免费PDF全文
柯炜  张铭  张铁成 《声学学报》2017,42(3):361-369
为了提高噪声和混响条件下分布式传声器阵列进行声源定位的性能,提出一种利用空间稀疏性和压缩感知原理的声源三维定位方法。该方法首先通过两次离散余弦变换方式提取出声音信号特征,并用该特征来构建稀疏定位模型,以便能够综合利用语音信号的短时和长时特性,同时降低模型维数;然后利用在线字典学习技术动态调整字典,克服稀疏模型与实际信号之间的失配问题,增强稀疏定位模型的鲁棒性;进而提出一种改进的平滑l0范数稀疏重构算法来进行声源位置解算,以提高低信噪比条件下的重构精度。仿真结果表明该方法不仅可以实现多目标定位,而且具有较强的抗噪声和抗混响能力.   相似文献   

10.
针对含噪语音难以实现有效的语音转换,本文提出了一种采用联合字典优化的噪声鲁棒性语音转换算法。在联合字典的构成中,语音字典采用后向剔除算法(Backward Elimination algorithm,BE)进行优化,同时引入噪声字典,使得含噪语音与联合字典相匹配。实验结果表明,在保证转换效果的前提下,后向剔除算法能够减少字典帧数,降低计算量。在低信噪比和多种噪声环境下,本文算法与传统NMF算法和基于谱减法消噪的NMF转换算法相比具有更好的转换效果,噪声字典的引入提升了语音转换系统的噪声鲁棒性。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号