首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
于伟威  郭静  刘学深 《中国物理 B》2010,19(2):23201-023201
This paper uses the classical ensemble method to study the double ionization of a 2-dimensional (2D) model helium atom interacting with an elliptically polarized laser pulse. The classical ensemble calculation demonstrates that the ratio of double to single ionization decreases with the increasing ellipticity of the driving field. The classical scenario shows that there are hardly any e--e recollisions with the circularly polarized laser pulse. The double ionization probability is studied for linearly and circularly polarized laser pulses. The classical numerical results are consistent with the semiclassical rescattering mechanism and in agreement with the experimental results and the quantum calculations qualitatively.  相似文献   

2.
实验研究了线偏振和圆偏振状态下的飞秒强激光脉冲在块状材料中的传输过程。不同偏振的激光脉冲在传输过程中得到了不同程度的光谱展宽,经色散补偿后,脉冲时域宽度均得到了压缩。详细分析了压缩脉冲的脉宽以及啁啾情况与入射激光脉冲能量之间的关系,比较了飞秒激光在线偏振及圆偏振情况下的不同压缩效果。在线偏振入射光情况下得到了最短21fs的压缩脉冲宽度,在圆偏振情况下得到的最短脉冲宽度为22fs。实验结果表明,这种光谱展宽与色散补偿方式对圆偏振光同样适用,而且圆偏振的入射激光将更有利于对更高能量的脉冲进行压缩。在色散补偿量相同的情况下,压缩效果随入射脉冲能量变化的规律符合理论估计。  相似文献   

3.
王培杰  何峰 《中国物理 B》2009,18(12):5291-5295
This paper studies the multiphoton ionization of the hydrogen atom exposed to the linearly or circularly polarized laser pulses by solving the time-dependent Schr?dinger equation. It finds that the ratio of the ionization probabilities by linearly and circularly polarized laser pulses varies with the numbers of absorbing photons. With the same laser intensity, the circularly polarized laser pulse favors to ionize the atom with more ease than the linearly polarized laser pulse if only two or three photons are necessary to be absorbed. For the higher order multiphoton ionization, the linearly polarized laser pulse has the advantage over circularly polarized laser pulse to ionize the atom.  相似文献   

4.
The effect of nonlinear properties of a material with a periodic structural cell (three-dimensional spiral) on the specificity of transmission and reflection of elliptically polarized laser pulses normally incident on the metamaterial is studied using the finite-difference time-domain method. An analysis of the hodograph of electric-field strength vector showed that an increase in the peak intensity of a linearly polarized laser pulse incident on a sample leads to an increase in the orthogonal component of the electric-field strength vector in the pulse transmitted through the medium. When pulses containing few electric-field periods are incident on a metamaterial, the latter demonstrates radically different optical properties for right- and left-handed circularly polarized light passing through the medium. It was shown that an increase in the intensity of a right-handed (left-handed) circularly polarized ultrashort pulse, incident on a sample composed of a rather large number of right-handed (left-handed) spirals made of nonlinearmaterial, widens the frequency range within which the incident light is almost entirely reflected from the medium.  相似文献   

5.
We use an interferometic scheme to extract the phase distribution of the electron wave packet from above-threshold ionization in elliptically polarized laser fields. In this scheme, an electron wave packet released from a circularly polarized laser pulse acts as a reference wave and interferes with the electron wave packet ionized by a time-delayed counter-rotating elliptically polarized laser field. The generated vortex-shaped interference pattern in the photoelectron momentum distribution enables us to extract the phase distribution of the electron wave packet in the elliptically polarized laser pulse with high precision. By artificially screening the ionic potential at different ranges when solving the time-dependent Schördinger equation, we find that the angle-dependent phase distribution of the electron wave packet in the elliptically polarized laser field shows an obvious angular shift as compared to the strong-field approximation, whose value is the same as the attoclock shift. We also show that the amplitude of the angle-dependent phase distribution is sensitive to the ellipticity of the laser pulse, providing an alternative way to precisely calibrate the laser ellipticity in the attoclock measurement.  相似文献   

6.
Field-induced ionization and Coulomb explosion of nitrogen   总被引:1,自引:0,他引:1  
Femtosecond-laser field-induced ionization and Coulomb explosion of diatomic nitrogen were systematically investigated using time-of-flight mass and photoelectron spectrometry. Both linearly and circularly polarized femtosecond laser pulses were used at intensities varying from 5×1013 to 2×1015 W/cm2. Strong N2 +, N2 2+, N+, N2+ and N3+ ion signals were observed for horizontally polarized pulses. Moreover, signals from the atomic ions exhibited a double-peak structure. Suppression of ionization was observed for circularly polarized pulses, while for vertically polarized pulses, only N2 + and N2 2+ ions were observed. The angular distributions of the ions were measured under zero-field conditions in the ionization zone. The atomic ions N+, N2+ and N3+ exhibited highly anisotropic distributions, with maxima along the laser polarization vector and zeroes normal to the laser polarization vector. In contrast to the atomic ions, N2 + exhibited a strong isotropic angular distribution. These observations indicate that dynamic alignment is responsible for the observed anisotropic angular distribution of the atomic ions. The kinetic energy spectrum of the photoelectrons is featureless and broad, extending above the ponderomotive potential of the laser pulse. The angular distribution is markedly anisotropic, with a maximum along the laser polarization vector. These observations further support the notion that the field-ionization mechanism is dominant under our experimental conditions. Received: 29 January 2002 / Revised version: 15 March 2002 / Published online: 12 July 2002  相似文献   

7.
The mechanism of terahertz(THz) pulse generation with a static magnetic field imposed on a gas plasma is theoretically investigated. The investigation demonstrates that the static magnetic field alters the electron motion during the optical field ionization of gas, leading to a two-dimensional asymmetric acceleration process of the ionized electrons. Simulation results reveal that elliptically or circularly polarized broadband THz radiation can be generated with an external static magnetic field imposed along the propagation direction of the two-color laser. The polarization of the THz radiation can be tuned by the strength of the external static magnetic field.  相似文献   

8.
We present a tomographic technique based on Photoelectron Angular Distributions (PADs) measured by Velocity-Map-Imaging (VMI) to reconstruct the three-dimensional shape of ultrashort free electron wave packets obtained from 1+2 Resonance Enhanced Multi-Photon Ionization (REMPI) of potassium atoms. To this end the laser pulse is rotated about its propagation direction and a set of PADs are recorded at different rotation angles. The tomographic reconstruction technique is described and results for linear and elliptical polarization are presented. Results for linearly polarized light producing cylindrically symmetric electron wave packets confirm the validity of our method whereas elliptically polarized light serves as a prototype for polarization-shaped laser pulses.  相似文献   

9.
The self-action of elliptically polarized Gaussian laser pulses in an isotropic gyrotropic medium with an anomalous frequency dispersion and cubic Kerr nonlinearity with a finite relaxation time on the order of the pulse duration is numerically studied. It is shown that, at the output of the medium, the pulse polarization nonmonotonically varies with time. The main peak of the pulse is additionally delayed compared to the time of passing the linear medium; the value of this delay significantly depends on the polarization of the incident pulse and achieves a maximum for incident pulses whose degree of ellipticity is equal to the ratio of the material constants characterizing the local and nonlocal nonlinear optical response of the medium. It seems promising to search for possible differences in relaxation times depending on the intensity of additions to the refractive indices of the right and left circularly polarized waves by investigating the time dependence of polarization characteristics at the output of the medium.  相似文献   

10.
As a crucial parameter for a few-cycle laser pulse, the carrier envelope phase(CEP) substantially determines the laser waveform. We propose a method to directly describe the CEP of an isolated attosecond pulse(IAP) by the vortex-shaped momentum pattern, which is generated from the tunneling ionization of a hydrogen atom by a pair of time-delayed, oppositely and circularly polarized IAP-IR pulses. Superior to the angular streaking method that characterizes the CEP in terms of only one streak, our method describes the CEP of an IAP by the features of multiple streaks in the vortex pattern. The proposed method may open the possibility of capturing sub-cycle extreme ultraviolet dynamics.  相似文献   

11.
Using a fully classical model, we have studied sequential double ionization (SDI) of argon driven by elliptically polarized laser pulses at intensities well in the over-barrier ionization region. The results show that the width of the ion momentum along the major elliptical axis increases with the ellipticity while that in the laser propagation direction decreases with the ellipticity. The ion momentum in the minor elliptical axis bifurcates from one peak structure to three-peak, then to four-peak, finally to six-peak structure. Analysis shows that this ellipticity dependence of the ion momentum distribution is a result of the subcycle nature of the ionization dynamics in SDI. By changing the ellipticity and wavelength of the driving pulses, this subcycle ionization dynamics is more observable. This provides a simple and efficient way to study the subcycle ionization dynamics in strong field processes.  相似文献   

12.
Wakefield generation by a femtosecond laser pulse is described in the frame of the slowly varying amplitudes approximation. The amplitude of the wakefield A, is studied as a function of laser pulse and background gas parameters, and is compared with well-known results for preformed, completely ionized plasma Ap,i. It is found that the ionization processes can increase Ap as compared to Ap,i at comparatively high laser peak intensities. It is shown that the increase of the wakefield amplitude due to gas ionization is more pronounced for circularly polarized laser pulses than for linearly polarized laser pulses. The strongest enhancement of Ap in comparison with Ap,i takes place for longer laser pulses with a duration in excess of the plasma wave period when the resonant conditions for ponderomotive excitation of the wakefield are not matched. Thus, ionization processes can expand the region of parameters for efficient generation of the laser wakefields  相似文献   

13.
We coincidently measure the molecular-frame photoelectron angular distribution and the ion sum-momentum distribution of single and double ionization of CO molecules by using circularly and elliptically polarized femtosecond laser pulses, respectively. The orientation dependent ionization rates for various kinetic energy releases allow us to individually identify the ionizations of multiple orbitals, ranging from the highest occupied to the next two lower-lying molecular orbitals for various channels observed in our experiments. Not only the emission of a single electron, but also the sequential tunneling dynamics of two electrons from multiple orbitals are traced step by step. Our results confirm that the shape of the ionizing orbitals determine the strong laser field tunneling ionization in the CO molecule, whereas the linear Stark effect plays a minor role.  相似文献   

14.
Propagation of an ultrashort, small-area (circularly polarized) pulse through a gas medium of three-level atoms near one-photon resonance is studied. The expression for the propagating pulse shape is obtained within the rotating wave and dipole approximations. Results are compared, both analytically and numerically, with those for two-level model. Sinusoidal and Gaussian shapes of input pulses are compared, and a high sensitivity of modulation of the light pulse for envelope to its input shape is revealed.  相似文献   

15.
A remarkable effect of circular dichroism, i.e., a difference in photoelectron spectra produced by right and left circularly polarized light in two-color multiphoton ionization of atoms, is predicted for the case when the atom is ionized by an extreme ultraviolet or x-ray femtosecond pulse in the field of a strong infrared laser pulse, both pulses being circularly polarized. We show that the sidebands formed in the spectra exhibit different circular dichroism often of different signs both in angle-resolved and angle-integrated experimental conditions. The effect can be used for detecting and measuring circular polarization of x rays in a spectral range where other methods are not effective.  相似文献   

16.
Trisorio A  Hauri CP 《Optics letters》2007,32(12):1650-1652
We provide what is believed to be the first experimental evidence of spatial control on multiple filamentation (MF) using circularly polarized femtosecond laser pulses. The exceptional shot-to-shot reproducibility of the MF pattern allowed complete characterization of the two copropagating high-energy filaments, revealing for the first time temporal (self-) compression of circularly polarized filamenting pulses to a fifth of the initial 57 fs laser pulse duration without any sophisticated chirp control. Compared with LP MF, an enhancement in spatial stability and an increase in energy throughput are reported for circular input polarization.  相似文献   

17.
The photoionization of H atoms irradiated by few-cycle laser pulses is studied numerically. The variations of the total ionization, the partial ionizations in opposite directions, and the corresponding asymmetry with the carrier-envelope phase in several pulse durations are obtained. We find that besides a stronger modulation on the partial ionizations, the change of pulse duration leads to a shift along carrier-envelope (CE) phase in the calculated signals. The phase shift arises from the nonlinear property of ionization and relates closely to the Coulomb attraction of the parent ion to the ionized electron. Our calculations show good agreement with the experimental observation under similar conditions.  相似文献   

18.
Complete control of single-electron states in a two-dimensional semiconductor quantum-ring model is established, opening a path into coherent laser-driven single-gate qubits. The control scheme is developed in the framework of optimal-control theory for laser pulses of two-component polarization. In terms of pulse lengths and target-state occupations, the scheme is shown to be superior to conventional control methods that exploit Rabi oscillations generated by uniform circularly polarized pulses. Current-carrying states in a quantum ring can be used to manipulate a two-level subsystem at the ring center. Combining our results, we propose a realistic approach to construct a laser-driven single-gate qubit that has switching times in the terahertz regime.  相似文献   

19.
A system of equations is formulated describing the evolution of a slowly varying envelope of an arbitrarily polarized ultrashort pulse of electromagnetic radiation in a medium with its resonant properties determined by an ensemble of isolated quantum dots. It is assumed that the concentration of quantum dots is small and that the whole system is equivalent to a gas of resonant four-level atoms. Particular solutions are found that correspond to the propagation of a stationary optical pulse. It is shown by numerical solution of the generalized truncated Maxwell-Bloch equations that steady-state propagation is possible only for circularly polarized light pulses, whereas the pulses of arbitrary polarization either decay and experience the dispersion-related broadening or are converted into circularly polarized solitary waves.  相似文献   

20.
We theoretically investigate the vortex patterns in photoelectron momentum distributions of He+driven by counter-rotating elliptically polarized,time delayed attosecond laser pulses by numerically solving the two-dimensional time-dependent Schrodinger equation.It is found that the number of vortex arms is extremely sensitive to the ellipticity and wavelength of counterrotating elliptically polarized laser pulses,which is illustrated by the attosecond perturbation ionization models.In addition,the effect of different time delays between two pulses on the interference patterns is also investigated and the corresponding physical mechanism is demonstrated.Since the wavelength,ellipticity and time delay have a significant effect on the vortex interference patterns,this may be a new method for laser field detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号