首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we report the high temperature solid-state synthesis of red phosphors Sr2MgSi2O7: Eu3+ with various Eu3+ concentrations. Their luminescent properties at room temperature are investigated. The X-ray diffraction patterns indicate that the red phosphors powder conforms to the tetragonal Sr2MgSi2O7. Impurity structure appears when more than 20% Eu3+ is doped. The samples show a strong emission line at 615 nm and the intensity increases with the increase of Eu3+ concentration until concentration quenching occurs. Charge compensation assists in the reduction of the impurity structure and vacancies; hence the luminescent intensity is enhanced. The decay measurement indicates that the lifetime of Eu3+ emission is about 2-3 ms. Some of the Eu3+ can be reduced to Eu2+; this is also discussed.  相似文献   

2.
This paper reports the photoluminescence and afterglow behavior of Eu2+ and Eu3+ in Sr3Al2O6 matrix co-doped with Dy3+. The samples containing Eu2+ and Eu3+ were prepared via solid-state reaction. X-ray diffraction (XRD), photo luminescent spectroscope (PLS) and thermal luminescent spectroscope (TLS) were employed to characterize the phosphors. The comparison between the emission spectra revealed that Sr3Al2O6 phosphors doped with Eu2+, Dy3+ and Eu3+, Dy3+ showed different photoluminescence. The phosphor doped with Eu3+, Dy3+ showed an intrinsic f-f transition generated from Eu3+, with two significant emissions at 591 and 610 nm. However, the phosphor doped with Eu2+, Dy3+ revealed a broad d-f emission centering around 512 nm. After the UV source was turned off, Eu2+, Dy3+ activated Sr3Al2O6 phosphor showed excellent afterglow while Eu3+, Dy3+ activated phosphor almost showed no afterglow. Thermal simulated luminescence study indicated that the persistent afterglow of Sr3Al2O6: Eu2+, Dy3+ phosphor was generated by suitable electron traps formed by the co-doped rare-earth ions (Dy3+) within the host.  相似文献   

3.
Long afterglow Sr3MgSi2O8: Eu, Dy phosphor with high brightness was prepared by sintering at high temperature and weak reductive atmosphere. The luminescent properties of this photoluminescent pigment were studied systematically by investigating concentration effects. The analytical results indicated that the main emission peaks appear at 482 nm. The excitation and emission spectra of this phosphor show that both of them are broadband. This is ascribed to the 4f7→4f65d1 transition of Eu2+ in the pigment matrix, which is in good agreement with the calculated value of 470 nm, and implies that luminescent centers Eu2+ occupy the deca-coordinated Sr2+ sites with the host of Sr3MgSi2O8.  相似文献   

4.
Eu2+-doped Sr3Al2O6 (Sr3−xEuxAl2O6) was synthesized by a solid-state reaction under either H2 and N2 atmosphere or CO atmosphere. When H2 was used as the reducing agent, the phosphor exhibited green emission under near UV excitation, while CO was used as the reducing agent, the phosphor mainly showed red emission under blue light excitation. Both emissions belong to the d-f transition of Eu2+ ion. The relationship between the emission wavelengths and the occupation of Eu2+ at different crystallographic sites was studied. The preferential substitution of Eu2+ into different Sr2+ cites at different reaction periods and the substitution rates under different atmospheres were discussed. Finally, green-emitting and red-emitting LEDs were fabricated by coating the phosphor onto near UV- or blue-emitting InGaN chips.  相似文献   

5.
Sr3MgSi2O8:Eu2+ and Sr2MgSi2O7:Eu2+ phosphors find uses in applications such as plasma display panel (PDP), solid-state lighting, longafter glow. Preparation of these phosphors by a modified combustion synthesis is described in this paper. As-prepared samples did not show photoluminescence. After reducing the samples at 900 °C, characteristic Eu2+ emission was observed. Preparation of these phosphors by using similar methods helped clarifying various results obtained for Sr3MgSi2O8:Eu2+ by different investigators.  相似文献   

6.
黄平  崔彩娥  王森 《中国物理 B》2009,18(10):4524-4531
A type of red luminescent Sr3Al2O6:Eu2+, Dy3+ phosphor powder is synthesised by sol-gel-combustion processing, with metal nitrates used as the source of metal ions and citric acid as a chelating agent of metal ions. By tracing the formation process of the sol-gel, it is found that it is necessary to reduce the amount of NO3- by dropping ethanol into the solution for forming a stable and homogeneous sol-gel. Thermogravimetric and Differential Scanning Calorimeter Analysis, x-ray diffractionmeter, scanning electron microscopy and photoluminescence spectroscopy are used to investigate the luminescent properties of the as-synthesised Sr3Al2O6:Eu2+, Dy3+. The results reveal that the Sr3Al2O6 crystallises completely when the combustion ash is sintered at 1250 C. The excitation and the emission spectra indicate that the excitation broadband lies mainly in a visible range and the phosphors emit a strong light at 618 nm under the excitation of 472 nm. The afterglow of (Sr0.94Eu0.03Dy0.03)3Al2O6 phosphors sintered at 1250 ℃ lasts for over 1000 s when the excited source is cut off.  相似文献   

7.
Neodymium doped strontium gallogermanate crystals were grown successfully by the Bridgman technique. The linear thermal expansion coefficients for the c- and a-axes were measured as 5.8 × 10−6 °C−1 and 6.5 × 10−6 °C−1. Absorption spectra, and fluorescence spectra, as well as fluorescence decay curves of Nd3+-doped Sr3Ga2Ge4O14 crystal, have been recorded at room temperature and used to calculate the absorption and stimulated emission cross-sections. Based on the Judd-Ofelt theory, three intensity parameters were obtained. The luminescent quantum efficiency of the 4F3/2 level was determined to be approximately 73.8% for this material. Compared with other Nd3+-doped laser crystals, Nd3+-doped Sr3Ga2Ge4O14 crystal displays special laser properties due to its disorder structure.  相似文献   

8.
Binary (ZnO)0.5(P2O5)0.5 glasses doped with Eu2O3 and nanoparticles of Gd2O3:Eu were prepared by conventional melt-quench method and their luminescence properties were compared. Undoped (ZnO)0.5(P2O5)0.5 glass is characterized by a luminescent defect centre (similar to L-centre present in Na2O-SiO2 glasses) with emission around 324 nm and having an excited state lifetime of 18 ns. Such defect centres can transfer the energy to Eu3+ ions leading to improved Eu3+ luminescence from such glasses. Based on the decay curves corresponding to the 5D0 level of Eu3+ ions in both Gd2O3:Eu nanoparticles incorporated as well as Eu2O3 incorporated glasses, a significant clustering of Eu3+ ions taking place with the latter sample is confirmed. From the lifetime studies of the excited state of L-centre emission from (ZnO)0.5(P2O5)0.5 glass doped with Gd2O3:Eu nanoparticles, it is established that there exists weak energy transfer from L-centres to Eu3+ ions. Poor energy transfer from the defect centres to Eu3+ ions in Gd2O3:Eu nanoparticles doped (ZnO)0.5(P2O5)0.5 glass has been attributed to effective shielding of Eu3+ ions from the luminescence centre by Gd-O-P type of linkages, leading to an increased distance between luminescent centre and Eu3+ ions.  相似文献   

9.
Zinc phosphate glasses doped with Gd2O3:Eu nanoparticles and Eu2O3 were prepared by conventional melt-quench method and characterized for their luminescence properties. Binary ZnO-P2O5 glass is characterized by an intrinsic defect centre emission around 324 nm. Strong energy transfer from these defect centres to Eu3+ ions has been observed when Eu2O3 is incorporated in ZnO-P2O5 glasses. Lack of energy transfer from these defect centres to Eu3+ in Gd2O3:Eu nanoparticles doped ZnO-P2O5 glass has been attributed to effective shielding of Eu3+ ions from the luminescence centre by Gd-O-P type of linkages, leading to an increased distance between the luminescent centre and Eu3+ ions. Both doped and undoped glasses have the same glass transition temperature, suggesting that the phosphate network is not significantly affected by the Gd2O3:Eu nanoparticles or Eu2O3 incorporation.  相似文献   

10.
A blue emitting phosphor of the triclinic BaCa2Si3O9:Eu2+ was prepared by the combustion-assisted synthesis method and an efficient blue emission ranging from the ultraviolet to visible was observed. The luminescence and crystallinity were investigated using luminescence spectrometry and X-ray diffractometry (XRD), respectively. The emission spectrum shows a single intensive band centered at 445 nm, which corresponds to the 4f65d1→4f7 transition of Eu2+. The excitation spectrum is a broad extending from 260 to 450 nm, which matches the emission of ultraviolet light-emitting diodes (UV-LEDs). The critical quenching concentration of Eu2+ in BaCa2Si3O9:Eu2+ phosphor is about 0.05 mol. The corresponding concentration quenching mechanism is verified to be a dipole-dipole interaction. The CIE of the optimized sample Ba0.95Ca2Si3O9:Eu0.052+ was (x, y)=(0.164, 0.111). The result indicates that BaCa2Si3O9:Eu2+ can be potentially useful as a UV radiation-converting phosphor for white light-emitting diodes (LEDs).  相似文献   

11.
The spectroscopic properties in UV-excitable range for the phosphors of Sr3La2(BO3)4:RE3+ (RE3+=Eu3+, Ce3+, Tb3+) were investigated. The phosphors were synthesized by conventional solid-state reactions. The photoluminescence (PL) spectra and commission international de I'Eclairage (CIE) coordinates of Sr3La2(BO3)4:RE3+ were investigated. The f-d transitions of Eu3+, Ce3+ and Tb3+ in the host lattices are assumed and corroborated. The PL and PL excitation (PLE) spectra indicate that the main emission wavelength of Sr3La2(BO3)4:Eu3+ is 611 nm, and Sr3La2(BO3)4:Ce3+ shows dominating emission peak at 425 nm, while Sr3La2(BO3)4:Tb3+ displays green emission at 487, 542, 582 and 620 nm. These phosphors were prepared by simple solid-state reaction at 1000 °C. There are lower reactive temperature and more convenient than commercial phosphors. The Sr3La2(BO3)4:Tb3+ applied to cold cathode fluorescent lamp was found to emit green light and have a major peak wavelength at around 542 nm. These phosphors may provide a new kind of luminescent materials under ultraviolet excitation.  相似文献   

12.
Porous Si3N4 ceramics with photoluminescence properties were prepared by pressureless sintering using α-Si3N4 powder as raw material and Eu2O3 as sintering additive. Chemical composition, phase formation, microstructure and photoluminescence properties of porous Si3N4 ceramics were studied by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence measurements (PL/PLE). The results show that single Eu2O3 additive promotes α→β transformation but not significant densification. A broad band emission center at 570 nm assigned to Eu2+ is observed, Eu3+ in Eu2O3 is (partially) converted to Eu2+ by reaction with Si3N4, which results in a lower β aspect ratio and β-content compared to the other Ln (Ln=lanthanide) oxide additives.  相似文献   

13.
Y2O3:Eu3+ phosphor films have been developed by using the sol-gel process. Comprehensive characterization methods such as Photoluminescent (PL) spectroscopy, X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy were used to characterize the Y2O3:Eu3+ phosphor films. In this experiment, the XRD profiles show that the Y2O3:Eu3+ phosphor films crystallization temperature and optimum annealing temperature occur at about 650 and 750 °C, respectively. The optimum dopant concentration is 12 mol% Eu3+ and the critical transfer distance (Rc) among Eu3+ ions is calculated to be about 0.84 nm. Vacuum environment is more efficient than oxygen and nitrogen to eliminate the OH content and hence yields higher luminescent phosphor films. The PL emission intensity of Y2O3:Eu3+ phosphor films is also dependent on the annealing time. It was found that the H2O impurities were effectively eliminated after annealing time of 25 s at 750 °C in vacuum environment. From the experiment results, the schematic energy band diagram of Y2O3:Eu3+ phosphor films is constructed.  相似文献   

14.
Borate Ba3InB9O18 (BIBO) has been adopted as a host material for phosphors for the first time. Lanthanide ions (Eu3+/Tb3+)-doped BIBO phosphors have been synthesized by solid-state reaction and luminescent properties investigated under ultravoilet (UV) excitation. For red phosphor BIBO:Eu, dominant emission peaking at 590 nm was attributed to 5D07F1 transition of Eu3+, which confirmed that the local site of Eu3+ occupied by In3+ ion in BIBO crystal lattice is at inversion symmetry center. Optimum Eu3+ concentration of BIBO:Eu under UV excitation with 227 nm wavelength is around 40%. The green phosphor BIBO:Tb showed bright green emission at 550 with 232 nm light excited and optimal of Tb3+ concentration measured in BIBO is about 8%. The corresponding luminescence mechanisms of Ln-doped BIBO (Ln=Eu3+/Tb3+) were analyzed. The luminescent intensity of Tb3+ can be significantly improved by co-doping of Bi3+ in the BIBO:Tb lattice. The likely reason was proposed in terms of the different interactions of the host lattice with these ions, and of these ions with each other.  相似文献   

15.
The Eu2+-doped Ba3Si6O12N2 green phosphor (EuxBa3−xSi6O12N2) was synthesized by a conventional solid state reaction method. It could be efficiently excited by UV-blue light (250-470 nm) and shows a single intense broadband emission (480-580 nm). The phosphor has a concentration quenching effect at x=0.20 and a systematic red-shift in emission wavelength with increasing Eu2+ concentration. High quantum efficiency and suitable excitation range make it match well with the emission of near-UV LEDs or blue LEDs. First-principles calculations indicate that Ba3Si6O12N2:Eu2+ phosphor exhibits a direct band gap, and low band energy dispersion, leading to a high luminescence intensity. The origin of the experimental absorption peaks is clearly identified based on the analysis of the density of states (DOS) and absorption spectra. The photoluminescence properties are related to the transition between 4f levels of Eu and 5d levels of both Eu and Ba atoms. The 5d energy level of Ba plays an important role in the photoluminescence of Ba3Si6O12N2:Eu2+ phosphor. The high quantum efficiency and long-wavelength excitation are mainly attributed to the existence of Ba atoms. Our results give a new explanation of photoluminescence properties and could direct future designation of novel phosphors for white light LED.  相似文献   

16.
The optical properties of SrSi2O2N2 doped with divalent Eu2+ and Yb2+ are investigated. The Eu2+ doped material shows efficient green emission peaking at around 540 nm that is consistent with 4f7→4f65d transitions of Eu2+. Due to the high quantum yield (90%) and high quenching temperature (>500 K) of luminescence, SrSi2O2N2:Eu2+ is a promising material for application in phosphor conversion LEDs. The Yb2+ luminescence is markedly different from Eu2+ and is characterized by a larger Stokes shift and a lower quenching temperature. The anomalous luminescence properties are ascribed to impurity trapped exciton emission. Based on temperature and time dependent luminescence measurements, a schematic energy level diagram is derived for both Eu2+ and Yb2+ relative to the valence and conduction bands of the oxonitridosilicate host material.  相似文献   

17.
The optical properties of SrSi2AlO2N3 doped with Eu2+ and Yb2+ are investigated towards their applicability in LEDs. The Eu2+-doped material shows emission in the green, peaking around 500 nm. The emission is ascribed to the 4f65d1–4f7 transition on Eu2+. In view of the too low quantum efficiency and the considerable thermal quenching of the emission at the operation temperature of high power LED (>1W/mm2) this phosphor is only suitable for application in low power LEDs. The Yb2+ emission shows an anomalously red-shifted emission compared to Eu2+, which is characterized by a larger FWHM, a larger Stokes shift and lower thermal quenching temperature. The emission is ascribed to self-trapped exciton emission. The Yb2+ activated phosphor is found to be unsuitable for the use in any phosphor-converted LEDs.  相似文献   

18.
Sr2MgSi2O7:Eu2+, Dy3+ phosphors were prepared by the (aminopropyl)-triethoxysilane (APTES) co-precipitation method. Effects of synthesis temperature on the crystal characteristics, luminescent properties and afterglow performance of Sr2MgSi2O7:Eu2+, Dy3+ phosphors have been discussed in detail and compared with the corresponding commercial product. The experimental results indicated that the sample could be synthesized at a relatively lower temperature and had better performance on the above-mentioned properties using the co-precipitation method.  相似文献   

19.
Eu3+掺杂的Sr2CeO4发光材料的光致发光研究   总被引:1,自引:0,他引:1       下载免费PDF全文
符史流  尹涛  丁球科  赵韦人 《物理学报》2006,55(9):4940-4945
利用高温固相反应法制备了Eu3+掺杂的Sr2CeO4样品,并对其吸附水前后的光谱特性进行了研究.结果发现,对于刚制备的Sr2-xEuxCeO4+x/2样品, 在Ce4+—O2-的电荷迁移激发中,只有强激发带(~35700cm-1)与Eu3+离子间存在能量传递,而弱激发带 (~29400cm-1)只是引起Ce4+—O2-的电荷迁移发射;在Sr2-xEuxCeO4+x/2样品吸附水后,Eu3+的线状吸收跃迁强度显著增加, Ce4+—O2-两个激发带均向Eu3+离子传递能量. Ce4+—O2-强激发带通过交换作用向Eu3+离子传递能量,而弱激发带与Eu3+离子间的能量传递机理是非辐射多极子近场力的相互作用. 关键词: 2-xEuxCeO4+x/2')" href="#">Sr2-xEuxCeO4+x/2 发光性质 能量传递 吸附水  相似文献   

20.
A series of red phosphors R0.8Eu1.2(MoO4)3 (R=La, Y, and Gd) have been synthesized by sol-gel method. The crystallization processes of the phosphor precursors were characterized by X-ray diffraction (XRD) and thermogravimetry-differential thermal analysis (TG-DTA), and the properties of these resulting phosphors have also been characterized by photoluminescence (PL) spectra and reflectance spectra. Field emission scanning electron microscopy (FE-SEM) was also used to characterize the shape and the size of the samples. The results of TG-DTA and XRD indicated that all of the R0.8Eu1.2(MoO4)3 (R=La, Y, and Gd) phosphors crystallized completely at 650 °C. Y0.8Eu1.2(MoO4)3 and Gd0.8Eu1.2(MoO4)3 have two structures, monoclinic and orthorhombic, while La0.8Eu1.2(MoO4)3 only adopts monoclinic structure. The luminescent properties of phosphors R0.8Eu1.2(MoO4)3 (R=La, Y, and Gd) are dependent on their structures to some extent. The orthorhombic Y0.8Eu1.2(MoO4)3 and Gd0.8Eu1.2(MoO4)3 phosphors show very similar luminescent properties, which differ from those of phosphors with monoclinic structure. For all of R0.8Eu1.2(MoO4)3 (R=La, Y, and Gd) phosphors, intense red emission is obtained by exciting at ∼394 and ∼465 nm which are owing to the sharp 7F05L6 and 7F05D2 lines of Eu3+. Two strongest lines at 394 and 465 nm in excitation spectra of these phosphors match well with the two popular emissions from near-UV and blue GaN-based LEDs, so they could be used as red components for white light-emitting diodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号