首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
简易楞次定律演示仪的改进   总被引:1,自引:1,他引:0  
介绍了对楞次定律演示仪的几次改进情况,并分析了改进中存在的利弊,提出了直接用铜丝绕制成线圈代替原演示装置中的铝环,可有效地解决涡流现象带来的问题. 该实验的改进过程可提高师生的动手能力,体验创新过程带来的喜悦心情,激发和培养学生的创新能力,同时也可弥补条件欠缺的地区没有楞次定律演示仪的缺陷.  相似文献   

2.
“楞次定律”教学探讨与实验设计   总被引:1,自引:0,他引:1  
简要分析了楞次定律教学难点形成的原因,建议通过创新实验设计来突破教学难点,为此设计了演示楞次定律实验现象的实验装置.  相似文献   

3.
第十三章电磁感应练习一电磁感应条件楞次定律一、判断题1.穿过闭合回路的磁通量变为零时,也会产上感应电流。()2.穿过闭合回路的磁通量越大,则产生的感应电流也就越大。()3.闭合回路在匀强磁场中运动时,必定会产生感应电流。()4.在匀强磁场中,闭合回路...  相似文献   

4.
1 电磁现象中都有功能关系电流周围的磁场所具有的能量是怎样转换来的 ?在金属导体两端加上电压 ,导体中就有电场 .自由电子在电场力的作用下 ,定向移动而形成电流 ,同时在它的周围激发磁场 .所以电流周围磁场的能量是通过电场力对定向移动的电荷做功转换来的 .当闭合回路中的  相似文献   

5.
涡流及其应用   总被引:1,自引:0,他引:1  
 大块金属在交变磁场中或相对磁场运动时,在金属内会出现流线为闭合涡旋状的感应电流,该电流叫涡旋电流,简称涡流。一、涡流产生的原因由法拉第电磁感应定律知,当通过闭合回路的磁通量发生变化时,将产生感生电动势,形成感生电流。由于金属内部处处可以构成回路,当大块金属处在变化着的磁场中或相对磁场运动时,穿过金属任意回路的磁通量都可能发生变化,在磁通量变化过程中,金属块内将产生感应电流,这种电流的流线在金属块内自行闭合,形成涡流。  相似文献   

6.
利用法拉第电磁感应定律和基尔霍夫第二定律,求解了随时间变化的均匀磁场中静止和旋转的导体细线圈上的感应电动势和感应电流.发现对于静止的导体细线圈,在每个周期内,有两次时间间隔,感应电动势与感应电流反向,并且有两次时间间隔,楞次定律不成立.随着磁场变化的圆频率趋向无穷大,感应电动势的峰值趋向无穷大,而感应电流的峰值趋向一个常数.只有忽略自感,线圈上的感应电动势和感应电流才会满足欧姆定律.最后,分析了导体细线圈所围平面的磁场分布和线圈自感系数.  相似文献   

7.
周上游 《物理通报》2012,(10):72-73
1834年俄国物理学家楞次概括了各种实验结果,提出了直接判断感应电流方向的法则,即楞次定律,闭合回路中产生感应电流的磁场总是要阻碍引起感应电流磁通量的变化.在进行楞次定律的教学中,学生通常不太理解定律中"阻碍变化"的涵义.笔者在教学中,用实验来突破学生理解上的难  相似文献   

8.
“电磁感应”一章的第5节内容有这么一句话,“英国物理学家麦克斯韦认为,磁场变化时会在空间激发一种电场,这种电场与静电场不同,它不是由电荷产生的,我们把它叫做感生电场.如果此刻空间存在闭合导体,导体中的自由电荷就会在感生电场的作用下定向运动,形成电流.”这句话引出了自己的一个思考,感生电场是闭合的,电荷是不是就不断地加速下去了呢,一圈又一圈,直至光速?当时很随意的一个想法,后来随着思考的深入有了更进一步的认识,下面就这个问题做一些展开.  相似文献   

9.
求解了两圆导体柱板相交所形成的多种闭合单连通区域的第一类格林函数,并利用数学软件MATLAB绘制出其等值线图.  相似文献   

10.
余念祖 《物理通报》2012,(12):104-106,111
楞次定律是电磁感应中一个十分重要的定律,然而,笔者却发现目前教科书中有关楞次定律的表述与"跳圈实验"不完全相符.我认为,该定律的描述存在缺陷,需要纠正.2012年笔者又仔细地重做了跳圈实验,实验结果是成功的,再次证实了楞次定律的描述存在问题.现把这个实验的情况及笔者的分析介绍给大家.笔者实验的目的是要观察"跳圈"(实际就是几个铝和铜的闭合线圈)在下述几种情况下的运动,  相似文献   

11.
楞次定律告诉我们,感应电流的磁场总是要阻碍引起感应电流的磁通量的变化.既然闭合电路中有感应电流,电路中就一定有感应电动势.如果电路不闭合,这时虽然没有感应电流,电动势依然存在.  相似文献   

12.
崔翔 《物理学报》2020,(3):87-98
传统的载流细导体段模型是分析导体闭合回路磁场的基本模型,尽管不满足电流连续性定律,但适用于导体闭合回路的磁场分析.然而,对于工程中只关注导体闭合回路中某一局部的多分支导体段并联的电流分配问题,传统模型将不能完整地反映各分支导体段之间磁场的相互作用.为此,现有文献提出的位移电流模型,满足了电流连续性定律,较好地解决了上述问题,但是,仍然存在理论不完整、不自洽以及计算公式复杂等问题.本文提出载流细导体段的传导电流模型,确保了载流细导体段在段内、段端及段外的电流连续性.推导出物理内涵更加深刻的总磁场微分方程和矢量磁位计算公式.提出载流细导体段传导电流模型磁场能量和电感的计算公式,极大地降低了计算复杂度,弥补了现有文献的不足.本文算例从模型、公式、计算等方面验证了本文理论和计算公式的正确性.  相似文献   

13.
磁共振成像(Magntic Resonance Imaging,MRI)技术是一种先进的医疗影像技术.在MRI系统中,通过梯度线圈电流快速切换方向,对待测区域施加梯度磁场,产生的梯度磁场会在其周围的金属体内激发出变化的涡旋电场,进而导致金属体内闭合的回路中产生对原来的梯度电流起抑制作用的感生电流,也就是我们所说的涡流.本文介绍了一种测量磁体涡流场的方法,结合电磁感应定律,设计了一种磁体涡流场测量装置,通过硬件采集以及软件处理的方法,将理想梯度场与实际磁场进行相减并将波形实时呈现,实验结果表明该方法可实现对磁体涡流场的测量.  相似文献   

14.
1电磁感应的两个实验定律一、楞次定律 此定律回答闭合导线回路中感应电动势的方向问题,其表述为:感应电流的磁通总是力图阻碍引起感应电流的磁通的变化。 用楞次定律判断感应电动势方向的“四步法”, 1.确定原磁通的方向. 2.确定原磁通的增减. 3.用楞次定律确定感应电流的磁通的方向,即:增时,与反向;减时,与同向. 4.确定感应电流的方向(即感应电动势的方向):感应电流的方向与成右手螺旋关系. 例:如图1所示,当矩 形线图向古运动时,确定 线圈中感应电动势方向. 我们看到:原磁通方 向垂直纸面向里,而且当 线圈运动时,减小,由楞 次定律可判断感…  相似文献   

15.
黄继洲 《技术物理教学》2001,9(4):48-48,F003
对于地磁场的成因 ,已有不少见解 ,但至今还没有得到满意的结果 .笔者经过多年的研究、思考 ,认为像其他任何现象的产生都是内因起主导作用一样 ,地磁场形成的主要原因 (即内因 )是地球的结构和它的运动 .一切磁现象都源于运动的电荷 ,即电流 .地磁场的形成也不例外 .地球是一个大导体 ,导体就一定有自由电荷存在 .像金属导体一样 ,地球的自由电荷主要是负电荷 ,或者说负自由电荷多于正自由电荷 .像永磁体的磁性是由分子环流形成的一样 ,地磁场主要是由这些自由电荷随地球自转和公转而在地球各层形成的绕地球旋转的环流产生的 .关于地球的结…  相似文献   

16.
在教学中依据课本中的指示,用铝环与磁铁棒相互作用来验证楞次定律,现象极不显著,根据过去教学经验,假若没有实验来验证楞次定律。只从理论上分析说明,很难使学生明确掌握楞次定律的精神实质。今将我改进了楞次定律的验证实验。介绍如下:  相似文献   

17.
产生感应电流的条件及感应电流方向的判断分为两种:闭合电路的部分导体在磁场中做切割磁感线运动,感应电流的方向用右手定则判断(初中教材);穿过闭合电路的磁通量发生变化,感应电流方向由楞次定律判断(高中教材).以上两种又概括为穿过闭合电路的磁通量发生变化.这样,感应电流的方向可统一来用楞次定律判断.  相似文献   

18.
针对电解铝工业中大电流测量现场环境复杂的难题,在传统光纤电流互感器的基础上提出一种便携式光纤电流互感器.对设计安装过程中由于柔性传感头光路不闭合和导体偏心引起的法拉第相移误差进行分析和有限元仿真计算,结果表明:法拉第相移相对误差随传感头不闭合度角度线性增加,随导体到非闭合点的距离增大而减小,且增加传感头匝数能减小法拉第相移误差.由于便携式光纤电流互感器准确度随导体到非闭合点的距离增大而提高,设计了一种使传感头非闭合点向一端延伸且易拆装的结构,实验测试得到该便携式光纤电流互感器的全温准确度为0.86%,满足电解铝厂准确度1%的使用要求.  相似文献   

19.
电磁感应中的力学问题,常以导体棒在磁场中运动的形式出现.导体棒在导电滑轨上运动,切割磁感线,产生感应电动势,使闭合回路中产生感应电流,导体棒受到安培力作用而使运动状态发生变化.因此感应电流与导体棒的加速度是一种相互制约的动态变化关系,最终导体棒达到某种稳定状态.下面结合具体实例对这种问题归类解析.  相似文献   

20.
超导楞次定律实验装置由磁块、3个金属环(铜、铝和不锈钢)和1个超导环以及导向管组成.除了传统楞次定律实验装置的展示内容,该装置还可以展示磁块在超导环上的悬浮现象,磁块在穿过金属环和超导环时的受力情况不同.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号