首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
 为了提高爆炸去磁脉冲发生器的输出能量,设计了绝缘层截断涡流回路磁体结构,以减小冲击去磁过程中磁体内产生涡流造成的能量损耗。把圆柱形钕铁硼磁体切分成4块,在块与块之间增加聚脂绝缘层,再组合成一个圆柱形整体,形成截断涡流回路的磁体结构。采用Maxwell 3D电磁场有限元分析软件,对未切分和切分后的钕铁硼磁体进行了静磁场计算,分析了两种结构下的磁感应强度分布。对这两种磁体结构的脉冲发生器进行了爆炸实验,测量了脉冲发生器输出的感生电动势,分析了涡流损耗对发生器输出电流的影响。结果表明:磁体中截断涡流回路的脉冲功率发生器涡流损耗较小,能够输出更大的电能。  相似文献   

2.
短脉冲线圈电流励磁是高频电真空器件中实现超强磁场的重要技术途径之一,此时器件内将不可避免地产生涡流并进一步对内部磁场分布构成影响。针对使用短脉冲磁场时涡流对电真空器件内磁分布的影响进行了研究,分析了线圈电流脉冲宽度、金属电导率和金属厚度等对涡流的影响,结果表明:随着线圈电流脉冲宽度的减小、金属电导率和金属厚度的增加,涡流对内部磁场的影响也随之增加,导致管内空间无法有效励磁。提出了两种抑制涡流影响的措施,包括采用高电阻率导体进行薄层电镀和对管壁金属纵向切槽开缝。计算结果表明,这两种方法能够有效抑制涡流对器件内部磁场分布的影响,具有良好的实用性。  相似文献   

3.
磁矩进动阻尼引起相位滞后的实验测量和理论分析   总被引:1,自引:0,他引:1       下载免费PDF全文
王相綦  冯德仁  尚雷  裴元吉  何宁  赵涛 《物理学报》2004,53(12):4319-4324
由于磁矩进动时阻尼作用的存在,脉冲磁场在金属材料中所产生的磁通量一般滞后于场,从而使穿过金属材料的脉冲磁场相位滞后.对于非铁磁性金属材料,这种相位滞后非常微弱,而且由于趋肤效应和涡流的影响,阻尼作用导致的相位滞后难以观测.给出了一种在有金属镀膜的陶瓷真空盒中测量这种相位滞后的实验方法及结果.这种方法采用超薄、有绝缘条纹的隔离分区镀膜技术,在测量中适当选择测量点的位置,因而将趋肤效应和涡流的影响降低到最小.同时对实验测量结果进行了理论分析. 关键词: 相位滞后 磁矩进动阻尼 趋肤效应 涡流  相似文献   

4.
涡流及其应用   总被引:1,自引:0,他引:1  
 大块金属在交变磁场中或相对磁场运动时,在金属内会出现流线为闭合涡旋状的感应电流,该电流叫涡旋电流,简称涡流。一、涡流产生的原因由法拉第电磁感应定律知,当通过闭合回路的磁通量发生变化时,将产生感生电动势,形成感生电流。由于金属内部处处可以构成回路,当大块金属处在变化着的磁场中或相对磁场运动时,穿过金属任意回路的磁通量都可能发生变化,在磁通量变化过程中,金属块内将产生感应电流,这种电流的流线在金属块内自行闭合,形成涡流。  相似文献   

5.
采用商业化有限元计算软件COMSOL,针对紧凑型托卡马克实验装置理论样机中的极向场磁体金属结构件进行涡流仿真。通过偏微分方程(PDE)接口,解决了内置的磁场(MF)接口在暂态涡流仿真过程中无法设置内部接触边界绝缘的问题,并大大降低了计算时间。通过对金属结构件涡流特性的研究,提出两种涡流抑制方法:更换材料与开槽,并讨论了这两种方法对涡流损耗的抑制效果。结果表明,开断槽对涡流损耗的抑制效果尤为显著。  相似文献   

6.
沈杰  宁瑞鹏  刘颖  李鲠颖 《物理学报》2006,55(6):3060-3066
从原理上分析了减小梯度线圈的半径可以减小其在带抗涡流板磁体中引起的涡流.然后采用目标场方法设计了一组半径缩减的梯度线圈,并用Biot-Savart定理计算了这个梯度线圈的梯度线性区.最后通过磁共振成像实验证明了原理中分析得出的结论. 关键词: 梯度线圈 涡流 目标场 流函数  相似文献   

7.
铜壳涡流磁场的实验研究   总被引:1,自引:1,他引:0  
本文介绍了模拟等离子体电流环电流在HL-1装置铜壳的1/4段上感应的涡流,在等离子体区产生的磁场大小、分布和时间特征的测量结果.涡流产生的垂直场随着等离子体电流环水平位移和电流上升率的增加而增加,而且在空间各点的大小和衰减时间常数都不相同。极向缝隙使涡流产生的垂直场和水平场沿大环方向呈周期性变化,环向缝隙对垂直场没有影响,但是却大大减弱了涡流产生的水平场。  相似文献   

8.
磁共振成像(MRI)的磁体设计首先是确保中心成像区的场值和均匀性, 二是尽可能减少场值耗散的距离即漏磁5Gs 线. 基于此本文提出了一种线性与非线性规划联合优化的方法. 首先将导体作为基本单元, 在预布置线圈的空间范围内构建二维连续导体网格. 通过线性规划搜索满足磁场约束条件的网格电流分布图. 再将存在电流的网格离散为一个个矩形线圈区域, 在保证场值均匀性、 杂散场5 Gs 线范围以及线圈位置间隔、 导体超导线安全裕度的前提下利用非线性规划, 具体确定各个线圈的轴向和径向位置、 线圈内导体层数和各层匝数以及通电流大小等. 采用这种联合优化方法, 不仅节省优化时间, 还可以自行设计线圈形状有利于工程实现. 文中由此方法给出了14 T MRI 磁体的一种设计方案, 依靠4 组线圈使得45 cm 中心球形成像内不均匀度降低到5 ppm, 而高场耗散的5 Gs 线通过磁体自屏蔽减小到15 m 以内. 满足了设计的要求.  相似文献   

9.
环向场磁体是ITER托卡马克装置中的核心部分,采用无绝缘高温超导磁体技术能使其产生更高的稳态场。文中介绍了无绝缘高温超导磁体技术的原理和特点,并以跑道型磁体为着手点,使用不同的超导带材,利用有限元法设计无绝缘高温超导磁体,总结了线圈个数与布局对磁体临界电流和中心磁场的影响。该磁体在20K下可产生的稳态磁场约为3.59T。  相似文献   

10.
人们对“单极感应”的认识   总被引:1,自引:1,他引:0  
一、引言 古典形式的“单极感应”是指一沿对称轴方向磁化的金属导体磁体绕其对称轴旋转(图1),而在通过金属电刷A、B连接的外电路与导体磁体构成的回路中产生稳恒电流的一种电现象.所用对称形磁体可以是圆柱形、圆盘形,也可以是圆锥形或其它轴对称形的金属导体.通常也称这些形状的金属导体(非磁化)在均匀磁场中绕其对称轴(对称轴沿外磁场方向放置)转动、而在回路中产生稳恒电流的现象为“单极感应”.之所以称为“单极”是由于只有永久磁体两极中的一极与外电路(见图1)相接的缘故.Web的这一命名虽然欠妥,但是由于历史及习惯的原因,一直沿用…  相似文献   

11.
In permanent magnetic resonance imaging (MRI) systems, pulsed gradient fields induce strong eddy currents in the conducting structures of the magnet body. The gradient field for image encoding is perturbed by these eddy currents leading to MR image distortions. This paper presents a comprehensive finite element (FE) analysis of the eddy current generation in the magnet conductors. In the proposed FE model, the hysteretic characteristics of ferromagnetic materials are considered and a scalar Preisach hysteresis model is employed. The developed FE model was applied to study gradient z-coil induced eddy currents in a 0.5 T permanent MRI device. The simulation results demonstrate that the approach could be effectively used to investigate eddy current problems involving ferromagnetic materials. With the knowledge gained from this eddy current model, our next step is to design a passive magnet structure and active gradient coils to reduce the eddy current effects.  相似文献   

12.
This paper evaluates a new, low-frequency finite-difference time-domain method applied to the problem of induced E-fields/eddy currents in the human body resulting from the pulsed magnetic field gradients in MRI. In this algorithm, a distributed equivalent magnetic current is proposed as the electromagnetic source and is obtained by quasistatic calculation of the empty coil's vector potential or measurements therein. This technique circumvents the discretization of complicated gradient coil geometries into a mesh of Yee cells, and thereby enables any type of gradient coil modelling or other complex low frequency sources. The proposed method has been verified against an example with an analytical solution. Results are presented showing the spatial distribution of gradient-induced electric fields in a multi-layered spherical phantom model and a complete body model.  相似文献   

13.
Eddy currents are inevitably induced when time-varying magnetic field gradients interact with the metallic structures of a magnetic resonance imaging (MRI) scanner. The secondary magnetic field produced by this induced current degrades the spatial and temporal performance of the primary field generated by the gradient coils. Although this undesired effect can be minimized by using actively and/or passively shielded gradient coils and current pre-emphasis techniques, a residual eddy current still remains in the MRI scanner structure. Accurate simulation of these eddy currents is important in the successful design of gradient coils and magnet cryostat vessels. Efficient methods for simulating eddy currents are currently restricted to cylindrical-symmetry. The approach presented in this paper divides thick conducting cylinders into thin layers (thinner than the skin depth) and expresses the current density on each as a Fourier series. The coupling between each mode of the Fourier series with every other is modeled with an inductive network method. In this way, the eddy currents induced in realistic cryostat surfaces by coils of arbitrary geometry can be simulated. The new method was validated by simulating a canonical problem and comparing the results against a commercially available software package. An accurate skin depth of 2.76 mm was calculated in 6 min with the new method. The currents induced by an actively shielded x-gradient coil were simulated assuming a finite length cylindrical cryostat consisting of three different conducting materials. Details of the temporal-spatial induced current diffusion process were simulated through all cryostat layers, which could not be efficiently simulated with any other method. With this data, all quantities that depend on the current density, such as the secondary magnetic field, are simply evaluated.  相似文献   

14.
Diffusion-weighted echo-planar magnetic resonance imaging is potentially of great importance as a diagnostic imaging tool; however, the technique currently suffers a number of limitations, including the image distortion caused by the eddy current induced fields when the diffusion-weighting magnetic field gradient pulses are applied. The distortions cause mis-registration between images with different diffusion-weighting, that then results in artifacts in quantitative diffusion images. A method is presented to measure the magnetic fields generated from the eddy currents for each of three orthogonal gradient pulse vectors, and then to use these to ascertain the image distortion that occurs in subsequent diffusion-weighted images with arbitrary gradient pulse vector amplitude and direction, and image plane orientation. The image distortion can then be reversed. Both temporal and spatial dependence of the residual eddy current induced fields are included in the analysis. Image distortion was substantially reduced by the correction scheme, for arbitrary slice position and angulation. This method of correction is unaffected by the changes in image contrast that occur due to diffusion weighting, and does not need any additional scanning time during the patient scan. It is particularly suitable for use with single-shot echo planar imaging.  相似文献   

15.
In ultra-low-field magnetic resonance imaging (ULF MRI), superconductive sensors are used to detect MRI signals typically in fields on the order of 10-100 μT. Despite the highly sensitive detectors, it is necessary to prepolarize the sample in a stronger magnetic field on the order of 10-100 mT, which has to be switched off rapidly in a few milliseconds before signal acquisition. In addition, external magnetic interference is commonly reduced by situating the ULF-MRI system inside a magnetically shielded room (MSR). With typical dipolar polarizing coil designs, the stray field induces strong eddy currents in the conductive layers of the MSR. These eddy currents cause significant secondary magnetic fields that may distort the spin dynamics of the sample, exceed the dynamic range of the sensors, and prevent simultaneous magnetoencephalography and MRI acquisitions. In this paper, we describe a method to design self-shielded polarizing coils for ULF MRI. The experimental results show that with a simple self-shielded polarizing coil, the magnetic fields caused by the eddy currents are largely reduced. With the presented shielding technique, ULF-MRI devices can utilize stronger and spatially broader polarizing fields than achievable with unshielded polarizing coils.  相似文献   

16.
Solving the problem of concomitant gradients in ultra-low-field MRI   总被引:1,自引:0,他引:1  
In ultra-low-field magnetic resonance imaging (ULF MRI), spin precession is detected typically in magnetic fields of the order of 10-100 μT. As in conventional high-field MRI, the spatial origin of the signals can be encoded by superposing gradient fields on a homogeneous main field. However, because the main field is weak, gradient field amplitudes become comparable to it. In this case, the concomitant gradients forced by Maxwell's equations cause the assumption of linearly varying field gradients to fail. Thus, image reconstruction with Fourier transformation would produce severe image artifacts. We propose a direct linear inversion (DLI) method to reconstruct images without limiting assumptions about the gradient fields. We compare the quality of the images obtained using the proposed reconstruction method and the Fourier reconstruction. With simulations, we show how the reconstruction errors of the methods depend on the strengths of the concomitant gradients. The proposed approach produces nearly distortion-free images even when the main field reaches zero.  相似文献   

17.
为获得更优的成像质量和更快的成像速度,磁共振成像(MRI)系统的梯度预加重模块需要具有更多的补偿通道和调节参数,常规预加重模块的设计方案使现场可编程门阵列(FPGA)面临巨大的资源消耗.为解决高性能梯度预加重模块的资源消耗大的问题,本文提出了一种基于分时复用技术的梯度预加重实现方案,以常规方案1/44的资源实现了11通道×4组参数的梯度预加重模块.将该模块用于0.35 T MRI系统,测试了补偿前后的涡流曲线和磁共振图像,结果表明该模块有效降低了系统的涡流,减小了磁共振图像中的涡流伪影.  相似文献   

18.
Magnetic resonance imaging (MRI) allows measurement of electric current density in an object. The measurement is based on observing how the magnetic field of the current density affects the associated spins. However, as high-field MRI is sensitive to static magnetic field variations of only the field component along the main field direction, object rotations are typically needed to image three-dimensional current densities. Ultra-low-field (ULF) MRI, on the other hand, with B0 on the order of 10–100 μT, allows novel MRI sequences. We present a rotation-free method for imaging static magnetic fields and current densities using ULF MRI. The method utilizes prepolarization pulses with adiabatic switch-off ramps. The technique is designed to reveal complete field and current-density information without the need to rotate the object. The method may find applications, e.g., in conductivity imaging. We present simulation results showing the feasibility of the sequence.  相似文献   

19.
Magnetic field inhomogeneities like eddy current-related gradient fields cause geometric distortions in echo-planar imaging (EPI). This in particular affects diffusion-weighted imaging where these distortions vary with the direction of the diffusion weighting and hamper the accurate determination of diffusion parameters. The double-spin-echo preparation often used aims to reduce the cumulative eddy current effect by adjusting the diffusion-weighting gradient pulse durations to the time constant of the dominant eddy current contribution. However, eddy currents with a variety of time constants may be present and cause residual distortions. Here, a modification is proposed where the two bipolar gradient pairs of the preparation are adjusted independently to different time constants. At the expense of a slightly prolonged echo time, residual geometric distortions and correspondingly increased values of the diffusion anisotropy can be reduced as is demonstrated in phantoms and the human brain. Thus, it may help to improve the reliability of diffusion-weighted EPI.  相似文献   

20.
王龙庆  王为民 《中国物理 B》2014,23(2):28703-028703
Significant high magnetic gradient field strength is essential to obtaining high-resolution images in a benchtop mag- netic resonance imaging (BT-MRI) system with permanent magnet. Extending minimum wire spacing and maximum wire width of gradient coils is one of the key solutions to minimize the maximum current density so as to reduce the local heating and generate higher magnetic field gradient strength. However, maximum current density is hard to optimize together with field linearity, stored magnetic energy, and power dissipation by the traditional target field method. In this paper, a new multi-objective method is proposed to optimize the maximum current density, field linearity, stored magnetic energy, and power dissipation in MRI gradient coils. The simulation and experimental results show that the minimum wire spacings are improved by 159% and 62% for the transverse and longitudinal gradient coil respectively. The maximum wire width increases from 0.5 mm to 1.5 mm. Maximum gradient field strengths of 157 mT/m and 405 mT/m for transverse and lon- gitudinal coil are achieved, respectively. The experimental results in BT-MRI instrument demonstrate that the MRI images with in-plane resolution of 50 ~tm can be obtained by using the designed coils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号