首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
提出一种基于铜沉积石墨烯涂层光子晶体光纤马赫-曾德干涉的硫化氢气敏传感器.将45mm光子晶体光纤两端与单模光纤进行拉锥熔接,使得光子晶体光纤的空气孔熔接时形成塌陷层,更好地激发包层模式,形成基于马赫-曾德结构的干涉仪.采用单层石墨烯粉体,加入异丙醇分散液,反复浸涂至光子晶体光纤包层表面形成石墨烯涂层,并沉积铜纳米颗粒,使传感器对硫化氢气体具有高的响应度.实验结果表明,在硫化氢气体浓度为0~60ppm范围内,随着被测气体浓度不断增大,其输出光谱呈现明显蓝移,传感器灵敏度为0.042 03nm/ppm,且线性度良好.该传感器成本低、灵敏度高、结构简单,适用于低浓度硫化氢气体的在线监测.  相似文献   

2.
提出了一种基于铜沉积二硫化钨膜包覆薄芯光纤的马赫-曾德尔干涉型气体传感器。将标准单模光纤与薄芯光纤熔接形成纤芯失配型气体传感器,借由外表面沉积铜的二硫化钨敏感膜对硫化氢气体的吸附,将气体的浓度与光谱偏移关联起来,从而达到检测低浓度硫化氢气体的目的。研究表明,该传感器对硫化氢气体的检测灵敏度为29.3pm,且在硫化氢气体体积分数为0~6×10-5的范围内显示出良好的线性关系和选择性。该传感器结构简单、灵敏度高、制备容易,特别适用于硫化氢气体的低浓度在线监测。  相似文献   

3.
还原氧化石墨烯由于独特的原子结构,作为气体检测领域有潜力的候选者引起了研究者们的广泛兴趣.本文采用水合肼作为还原剂来制备还原氧化石墨烯,并以此作为叉指电极的气体敏感层,研究了其对NO2气体的响应特性.结果表明,水合肼还原的氧化石墨烯可以实现在室温下对浓度为1—40 ppm (1 ppm=10–6)的NO2气体的检测,具有较好的响应性和重复性,恢复率可以达到71%以上,但是灵敏度只有0.00201 ppm–1,还有较大的提升空间.此外,对浓度5 ppm的NO2的响应和恢复时间分别是319 s和776 s.水合肼还原的氧化石墨烯气体传感器的传感机制可归因于NO2分子和传感材料之间的电荷转移.还原氧化石墨烯的突出电学特性促进了电子转移过程,这使得传感器在室温下表现出优异的气体传感性能.本实验研究可为石墨烯基传感器件的应用奠定一定的基础.  相似文献   

4.
光子晶体和纳米光纤是两种重要的微纳光子学材料,各自具有非常独特的控制光子传输状态的功能,是研究微纳尺度下光与物质相互作用的重要平台,也是实现新型微纳光子学器件的重要基础.文章简要介绍了超快速低功率光子晶体全光开关、纳米光纤传感器、干涉器和介质-金属纳米线复合结构器件的研究进展.  相似文献   

5.
娄淑琴*  鹿文亮  王鑫 《物理学报》2013,62(9):90701-090701
基于所研制的侧漏型光子晶体光纤,提出并构建了出一种同时检测扭转角度 和扭转方向的高灵敏度Sagnac干涉仪型光纤扭转传感器.顺时针扭转时, 传感器传输谱向短波长方向偏移;逆时针扭转,向长波长方向偏移. 对传感器扭转特性的实验研究结果表明,构成Sagnac干涉仪的侧漏型光子晶体光纤的长度, 对扭转敏感系数和扭转角度测量范围起着决定性作用.当光纤长度较短时, 扭转传感器具有较大的扭转灵敏度,但扭转角度测量范围较小;光纤长度增加时,扭转灵敏度减小, 扭转角度测量范围增大.当构成Sagnac干涉仪的侧漏型光子晶体光纤长度为14.85 cm时, 传感器的扭转敏感系数可达到0.9354 nm/(°),扭转角度测量范围为-90°—90°; 光纤长度为32 cm时,最大扭转敏感系数降为0.2132 nm/(°), 扭转角度测量范围扩展至-180°—180°. 采用二维测量矩阵法可以有效排除温度对扭转角度的测量的影响. 关键词: 光纤传感器 侧漏型光子晶体光纤 扭转传感器 Sagnac干涉仪  相似文献   

6.
施伟华  尤承杰  吴静 《物理学报》2015,64(22):224221-224221
利用光子晶体光纤结构的灵活性和性能的优越性, 设计了一种基于D形光子晶体光纤的折射率和温度传感器. 在D形光子晶体光纤表面抛磨并镀上金纳米薄膜, 作为表面等离子体共振传感通道用来测量液体折射率; 在包层的一个空气孔中填充温敏液体甲苯, 作为定向耦合通道实现对温度的测量. 进一步的数值计算发现, 基于定向耦合效应的温度传感和基于表面等离子体共振的折射率传感相互独立, D形光子晶体光纤同时进行折射率和温度传感检测. 在各向异性的完美匹配层边界条件下利用全矢量有限元法对该传感器特性进行了数值研究, 发现D形光子晶体光纤的空气孔直径决定了定向耦合吸收峰的中心波长和温度传感的灵敏度, 金薄膜的厚度和D形结构的抛磨深度仅影响表面等离子体共振峰的相对强度. 结果表明: 该传感器在-10–80 ℃的温度范围内具有11.6 nm/℃的温度灵敏度, 在1.34–1.44折射率范围内折射率灵敏度最高可达26000 nm/RIU.  相似文献   

7.
在一段8cm长的保偏光纤两端分别熔接两段普通的单模光纤,在保偏光纤的侧面均匀地镀上一层聚二甲基硅氧烷材料,聚二甲基硅氧烷材料经该段保偏光纤接入到一个光纤耦合器中,从而形成一个光纤Sagnac干涉仪.聚二甲基硅氧烷材料吸附挥发性有机物分子时,会引起聚二甲基硅氧烷材料体积上的膨胀,导致Sagnac干涉波长的漂移,通过对Sagnac干涉光波长漂移的测量即可实现对挥发性有机物气体的检测.实验测量了传感器对挥发性有机物浓度的响应,结果表明,在0~6 000ppm浓度范围内,传感器的灵敏度为1.03pm/ppm,由光谱仪的最小分辨率为0.02nm可知,该传感器对挥发性有机物的检测下限约为19.4ppm.该传感器相比聚二甲基硅氧烷材料与光纤光栅结合的传感器,灵敏度提高了4 300倍.  相似文献   

8.
使用银纳米线作为材料制备柔性叉指电极,用还原氧化石墨烯(reduced graphene oxide, rGO)作为气体敏感材料制备出柔性气体传感器,并研究其对二氧化氮气体的响应特性以及柔韧性能.实验结果表明,制备的以银纳米线作为电极的r GO气体传感器可以实现室温下对浓度为5-50 ppm (1 ppm=10^–6)的NO2气体的检测,对50 ppm的NO2的响应能够达到1.19,传感器的重复性较好,恢复率能够保持在76%以上,传感器的灵敏度是0.00281 ppm^-1,对浓度为5 ppm的NO2气体的响应时间是990 s,恢复时间是1566 s.此外,传感器在0°-45°的弯曲角度下仍表现出优异的电学特性与气体传感性能,所制备的器件具有相对稳定的导电性和较好的弯曲耐受性.  相似文献   

9.
提出了一种有机聚合物敏感结合光波相位检测的光纤气体传感方法并进行了实验验证.利用不同浓度酸性气体作用下,有机聚合物其折射率将发生改变的特性,在光纤法布里-珀罗(Fabry-Perot,FP)腔中填充有机聚合物薄膜,通过分析光纤F-P腔输出的光谱特性,实现对酸性气体浓度高精度测量.实验结果表明,有机聚合物的折射率随被测气体浓度的增加而减小,传感器的系统灵敏度为(0.726~1.006)×10~(-2) cm/%VOL,相位灵敏度为1.276×10~(-2) rad/%VOL,浓度分辨率为0.783ppm,可应用于石油化工领域二氧化碳、硫化氢等酸性气体的高精度测量.  相似文献   

10.
设计了一种基于模间干涉的亚波长直径光纤气体折射率传感方案,并分析了其测量灵敏度.将标准单模光纤和一段仅传输基模与二阶模的无包层亚波长直径光纤结合形成传感头,通过分析传感头外气体折射率的变化对两个模式干涉谱峰值移动的影响,研究了这种传感器的折射率测量灵敏度.结果表明,这种传感器的灵敏度高于利用折射率引导型光子晶体光纤的基于模间干涉的折射率传感器.因为没有气体向微孔扩散的过程,这种基于模间干涉的亚波长光纤折射率传感器可用于实时探测.  相似文献   

11.
设计了一种基于模间干涉的亚波长直径光纤气体折射率传感方案,并分析了其测量灵敏度.将标准单模光纤和一段仅传输基模与二阶模的无包层亚波长直径光纤结合形成传感头,通过分析传感头外气体折射率的变化对两个模式干涉谱峰值移动的影响,研究了这种传感器的折射率测量灵敏度.结果表明,这种传感器的灵敏度高于利用折射率引导型光子晶体光纤的基于模间干涉的折射率传感器.因为没有气体向微孔扩散的过程,这种基于模间干涉的亚波长光纤折射率传感器可用于实时探测.  相似文献   

12.
基于表面等离子体共振和定向耦合的光子晶体光纤传感器   总被引:2,自引:0,他引:2  
设计了一种具有较大动态检测范围的新型光子晶体光纤折射率传感器。光子晶体光纤中一个空气孔镀上金纳米薄膜作为表面等离子体共振传感通道用来检测低于石英基底材料的液体折射率,一个空气孔填充待测液体作为定向耦合器通道用于检测高于石英基底材料的折射率。该传感器可以实现折射率为1.32~1.52范围内的检测,且具有较高的传感灵敏度。在各向异性的完美匹配层(PML)下利用全矢量有限元法(FEM)对该传感器特性进行了数值研究,结果表明:在1.32~1.44和1.46~1.52的折射率范围该折射率传感器灵敏度最高分别可达13500 nm/RIU和28700 nm/RIU,RIU为折射率单位。  相似文献   

13.
 提出了利用光子晶体光纤空气孔塌缩技术制作光子晶体光纤表面等离子体共振传感器,构建了空气孔完全塌缩的光子晶体光纤表面等离子体共振传感器模型,并模拟计算了其中的表面等离子体共振效应。制作了全光纤化的波长检测型的光子晶体光纤表面等离子体共振传感器,利用超连续谱光源进行了相关实验。实验结果表明:以空气为待测环境介质时,对应的共振波长为465 nm,与理论计算相符合。  相似文献   

14.
提出了一种适合于高灵敏度气体传感器的新型光子晶体光纤结构.采用全矢量频域有限差分方法,研究了基于不同结构光子晶体光纤的气体传感器的相对灵敏度.由全矢量频域有限差分法,通过直接求解由麦克斯韦方程组导出的标准特征值方程,可以得到光纤中可能存在的不同模式的传播常量、电场分布和磁场分布.分别给出了三种不同结构光子晶体光纤在波长为1.3312 μm处,与结构参量变化对应的相对灵敏度变化以及在不同波长情况下的相对灵敏度变化.结果证明,该新结构具有较其它代表性的折射率引导型光子晶体光纤结构更高的灵敏度,特别适合作气体传感器.  相似文献   

15.
刘天沐  江毅  崔洋 《光子学报》2020,49(4):115-122
提出了一种在高温环境下同时测量温度和气压的光子晶体光纤温度压力传感器.在普通单模光纤和光子晶体光纤之间熔接一段空心光纤构成干涉结构.空心光纤段构成非本征法布里-珀罗干涉仪,利用光子晶体光纤的微孔与外界相通,通过气体折射率变化来测量环境中的气压变化;光子晶体光纤段构成本征法布里-珀罗干涉仪,利用热膨胀效应和热光效应来测量环境中的温度.传感器的解调通过自制的白光干涉解调仪实现,实验通过测量腔长得到被测环境的温度和气压.在不同温度和气压环境下,对腔长分别为306μm和1535μm的温度压力光纤传感器进行连续测量.实验结果表明,传感器能够在28~800℃的温度下和0~10 MPa的气压下稳定工作,测量范围内温度灵敏度可达17.4 nm/℃,压力灵敏度随温度增加而降低,在28℃时可达1460.5 nm/MPa.  相似文献   

16.
本文利用常压化学气相沉积方法,在光子晶体光纤内孔壁上直接生长石墨烯薄膜,实现了石墨烯-光纤复合材料的直接制备.研究发现光纤中石墨烯层数和缺陷主要受生长温度、生长时间以及甲烷流量等参数影响.拉曼光谱和扫描电子显微镜等表征结果表明:石墨烯在光子晶体光纤孔内的生长均匀性良好,适当的高温、较长的生长时间以及合适的甲烷流量有利于生长高质量的石墨烯.石墨烯-光子晶体光纤复合材料的制备,对基于光纤平台的石墨烯光电器件的研究、开发和应用有着重要的推动作用,也为石墨烯全光纤集成应用提供了新的思路.  相似文献   

17.
研究了一种基于多层石墨烯材料的光纤声波传感器,该传感器是由单模光纤和多层石墨烯薄膜构成的光纤法布里-珀罗干涉腔结构。分别采用多层的石墨烯和氧化石墨烯(GO)材料作为声压敏感薄膜,进行声波传感实验研究。结果表明,在音频范围内,基于石墨烯和GO薄膜的光纤声波传感器的平均信噪比分别达到56dB和69dB,平均最小可探测声压灵敏度分别为20.8μPa·Hz~(-1/2)和6.63μPa·Hz~(-1/2),远低于电学声波传感器的最小可探测声压灵敏度。基于石墨烯材料的光纤声波传感器具有更高的声波检测灵敏度,适用于强电磁干扰、狭小空间等环境下的微声压测量。  相似文献   

18.
通过理论分析和数值模拟,研究了一种基于光子晶体光纤(PCF)模间干涉的干涉计的灵敏度.根据光纤模间干涉理论,结合光子晶体光纤的归一化频率,分析了PCF干涉计测量气体折射率的原理,得到一个可以衡量PCF干涉计灵敏度的参数δns.通过对该参数物理意义的分析可以得出,PCF纤芯附近第一层气孔对灵敏度影响最大.相比于常规气孔结构,把PCF第一层气孔变为面积更大的圆与椭圆复合孔,可显著提高传感灵敏度.  相似文献   

19.
通过低压化学气相沉积的方法制备了单层石墨烯,用电化学电镀的方法在石墨烯表面沉积了氧化锌纳米层,制作出一种新的、简单、高效的掺杂氧化锌纳米层的石墨烯基气敏传感器,并研究了本征的和电镀氧化锌的石墨烯基气敏传感器对不同体积分数的NO_2气体的响应特性和恢复特性。实验表明:在工作电压-0.5V,时间300s的条件下电镀ZnO的石墨烯基传感器的气敏性最好,其对10ppm NO_2的灵敏度为-22.126%(本文中定义灵敏度为测量电阻R与本征电阻R_0的差值与本征电阻的比值,故为负值),是本征石墨烯传感器的3.85倍,且响应的最低浓度达到0.5ppm(其灵敏度为-0.786%)。  相似文献   

20.
祖鹏  向望华  金永兴 《光子学报》2011,(9):1433-1437
研究了低双折射光子晶体光纤中由光纤扭曲造成的圆双折射效应,并应用Sagnac干涉仪结构设计了扭曲传感器.在Sagnac环中的光子晶体光纤上施加机械压力引入初始线双折射并产生正弦干涉光谱,再扭曲光纤产生圆双折射使干涉光谱随扭曲角度移动.光谱峰值波长随扭曲角度变化符合Sinc函数关系,理论分析与实验相符.传感器灵敏度为1....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号