首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
 时间分辨力是变像管扫描相机的重要技术参数,提出了将超分辨率图像复原理论应用于超快诊断研究,首先阐述了图像超分辨率复原在超快诊断中应用的可能性,给出了变像管扫描相机图像点扩散函数的分析和计算方法。最后,基于Poisson MMAP(MPMAP)超分辨力复原算法,获得了Au阴极X射线变像管扫描相机的图像复原结果,实验结果证明了方法的有效性,为变像管扫描相机时间分辨力的提高提供了一种新的途径。  相似文献   

2.
变像管皮秒分幅和飞秒扫描相机的实验研究   总被引:4,自引:4,他引:0  
本文将描述两种变像管皮秒分幅相机和一种飞秒扫描相机的设计特点、动态测试方法和实验结果。第一种变像管皮秒分幅相机采用了交叉点扫描多光栏分幅的方法,其变像管具有长加速电极和短阳极的静电弱聚焦系统与偏转灵敏度高、偏转像质好的偏转群体结构;其超快速控制电路只需一个光电开关斜坡电压脉冲发生器和一个特殊设计的脉冲成形网络即可送出具有合适时间关联的4对正负极性三角波和一对正负极性的单台阶液电压脉冲。实验表明,该相机在提供6幅分幅图像的情况下,每幅图像全曝光时间为80ps,除 3~4幅图像间的时间间隔为680ps外,其余均为160ps,动态空间分辨率达到5.51p/mm。第二种变像管皮秒分幅相机采用快门式分幅方法;其变像管采用行波偏转系统,内增强MCP做成带状线结构,并具有输入输出阻抗变换器,其三台阶波和快门脉冲序列均由光电开关电路和脉冲成形网络产生。该相机在提供三幅分幅图像的情况下,每幅图像全曝光时间为660ps,画幅之间的时间间隔均为4ns,动态空间分辨率为5.5lp/mm。飞秒扫描相机采用MCP内增强飞秒扫描变像管、具有负时间畸变的中继透镜和无触发晃动的光电开关扫描电路。实验证明,该相机在时间分辨率为500fs时,其动态范围为30;当时间分辨率为1.2ps时,其动态范围可达500;无扫描图像弯曲现象,触发晃动为±2ps.  相似文献   

3.
建立了一台基于新研制的高重复频率皮秒扫描相机的双光子激发荧光寿命显微成像系统,重点介绍所研制的高重复频率皮秒扫描相机。为了在高时间分辨力的同时扩大时间测量范围,实现大面积两维空间高时间分辨取样测量,从而提高采样速率和更有效地发挥扫描相机的作用,设计和研制了一种大面积、高时间分辨力扫描变像管和一种重复频率高达1MHz的斜坡电压扫描电路。基于上述关键部件所研制的扫描相机具有重复频率高、扫描速度可调、时间分辨力高、工作面积大、非线性低、触发晃动小等优点。用钛宝石飞秒激光器作为激光脉冲源,通过脉冲提取器将76MHz的高重复频率降低为1MHz,采用可调延时器和标准具对扫描相机的时间分辨力、扫描速度和非线性进行标定。该系统的时间分辨力达到6.5ps,非线性为2.60%,可测量的时间范围从十几皮秒到几十纳秒。测量了若丹明6G和香豆素314两种标准荧光染料的荧光寿命,取得了与参考文献一致的实验结果。  相似文献   

4.
针对高时空分辨的设计要求,分析影响条纹相机中条纹变像管的物理时间弥散、技术时间弥散和扫描电路触发晃动的因素,优化设计了行波偏转前置磁透镜聚焦的条纹变像管系统.利用CST仿真软件研究了行波偏转器内部的时变电磁场分布,计算了行波偏转器内电磁波的传播速度.结果表明,行波偏转器的指长为8mm、指宽为1mm、指间距为0.24mm、管脚长为2.5mm、板厚为1mm及总长度为17.12mm时,实现了电子团的飞行速度与扫描电脉冲沿行波偏转器的传输速度的匹配.采用电子追迹法和瑞利判据分析了条纹变像管的动态时间和空间特性,得到单次扫描动态时间分辨率为200fs、同步扫描时间分辨率为208fs、动态空间分辨率优于20lp/mm.  相似文献   

5.
提出了一种实现大工作面积分幅变像管的方法。设计了一种大输入光电阴极、小输出图像的静电聚焦变像管,输出端配接常规小工作面积快门选通微通道板(MCP)分幅管单元,实现图像选通和增强功能。这种分幅变像管与直接采用大面积MCP相比,不仅省去了制作大面积MCP的高昂成本,而且避免了由于微带线过长引起的选通脉冲传输衰减大、增益不均匀性严重等固有缺陷。设计的分幅变像管输入阴极有效直径100 mm,输出图像直径40 mm,放大倍率为0.4。中心空间分辨力达到14.4 lp/mm,边缘空间分辨力达到11.2 lp/mm,几何畸变不超过15%,其分幅特性由MCP分幅单元决定。  相似文献   

6.
为满足ICF实验中对X射线条纹相机大动态能力的需求,设计了一款大动态双聚焦X射线条纹变像管。其偏转灵敏度为39 mm/kV,静态空间分辨率在阴极中心处优于30 lp/mm,边缘优于10 lp/mm,时间分辨率在10 ps左右,阴极有效长度为30 mm,放大率为1.3,管子总长为425 mm。此款变像管主要通过提高电子飞行速度而缩短电子相互作用时间,从而达到降低空间电荷效应、提高动态范围的目的。最终设计的变像管轴上电势最高16.5 kV,最低5 kV,电子从阴极到达荧光屏的时间仅为6.62 ns。基于设计的变像管参数,对管子进行了加工制造,并进行了初步调试和测试,变像管具有最佳成像效果时各电极实际电压与设计电压几乎一样,放大率为1.35,偏转灵敏度为40 mm/kV,与设计值十分吻合。  相似文献   

7.
模块化程控各向异性聚焦条纹相机   总被引:1,自引:1,他引:0       下载免费PDF全文
通过采用各向异性聚焦及电四极透镜技术,设计出物理弥散达到0.38 ps,边缘空间分辨力达到56 lp/mm的新型条纹变像管。研制出对条纹相机高压输出、环境监测、扫描档位切换和相机工作方式选择的模块化程控系统。利用Nd:YLF(脉冲宽度8 ps、波长263 nm)脉冲激光器对相机的性能指标进行了标定,测得静态和动态空间分辨力分别为35 lp/mm和25 lp/mm,动态范围达到950∶1,时间分辨力达到8 ps,在扫描和狭缝方向可实现独立变倍和KB显微镜耦合,便于对目标的空间分辨力进行灵活配置。  相似文献   

8.
大动态范围长狭缝条纹相机系统   总被引:3,自引:1,他引:2  
 为了满足ICF实验等离子体诊断需要,研制了一种大动态范围长狭缝软X射线条纹相机系统。该系统在保证30 mm的长狭缝的情况下,通过设计一种短聚焦区高压电子光学系统大大缩短电子的渡越时间、提高阳极工作电压至16.5 kV、弃用MCP内增强器、采用光纤面板耦合和使用制冷CCD等一系列措施,达到改善扫描变像管条纹相机动态范围的目的,同时保证具有较高的时间分辨力。动态测试表明,该系统动态空间分辨力为15 lp/mm,时间分辨力优于31 ps,动态范围大于922。  相似文献   

9.
皮秒同步扫描相机系统主要包括皮秒同步扫描变像管、同步扫描线路和CPM激光器。皮秒同步扫描变像管在保证时间分辨率和空间分辨率的同时,着重对偏转系统进行了改进。不仅要使其偏转灵敏度大幅度提高,而且要设法减小其极间电容、引线电感和趋虑效应,从而提高了其品质因数,使其对扫描线路的功率要求大幅度减小。所研制的  相似文献   

10.
取样成像扫描式分幅技术   总被引:1,自引:0,他引:1       下载免费PDF全文
 介绍了用于惯性约束聚变(ICF)等离子体诊断的取样成像扫描分幅技术的原理,分析了该分幅技术的有关特性参数,如曝光时间、画幅数目、空间分辨率等。借助于特别设计的扫描变像管进行了该技术的原理性实验,并利用计算机数字图像处理技术进行图像的重构。实验获得了持续时间约100ps的发光过程的16幅图像,曝光时间优于6.3ps,阴极上空间分辨率为3.5 lp/mm。  相似文献   

11.
偏转板对条纹变像管性能参数的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
针对一款多用途条纹变像管,研究了扫描板位置对其性能参数的影响,分析了扫描板在条纹管轴向和径向的装架偏差对条纹变像管的时空分辨能力造成的影响。首先通过模拟得到大量服从一定统计规律电子的运动轨迹,然后利用调制传递函数对时空分辨能力进行评价。结果表明:偏转板放置在阳极光阑处条纹管可获得最佳时间分辨能力,而放置在电子束径最小的地方可以获得最佳空间分辨能力和最大阴极有效面积,同时,偏转板中心轴应该与条纹管旋转对称轴严格重合。  相似文献   

12.
条纹变像管因其超高时间分辨特性而成为实现皮秒至飞秒量级时间分辨的重要测量仪器.本文设计了一种同时兼顾高时空分辨的行波偏转器前置短磁聚焦条纹变像管.该管型通过减小电子渡越时间以抑制空间电荷效应、采用偏转器前置以及行波偏转方式提高偏转灵敏度,实现整管时空分辨率的大幅提升.利用CST微波工作室有限元法数值计算条纹变像管行波偏转器的通频带宽、偏转灵敏度,结果表明:本设计中的行波偏转器因其较高的通频带宽特性实现了偏转器上的电磁波相速度在很宽频率范围内与电子轴向群速度匹配,产生更有效偏转.利用CST粒子工作室模拟追踪光电子的运行轨迹,通过最佳像面上的时间调制传递函数和空间调制传递函数,计算得到其理论时间分辨率可达220 fs,空间分辨率高于100 lp/mm.同时根据像差定义给出追踪实际电子轨迹的像差计算方法,实现对变像管成像质量评价.最后利用紫外灯对其进行静态测试,获得静态空间分辨率优于35 lp/mm的结果.  相似文献   

13.
惠丹丹  田进寿  王俊锋  卢裕  温文龙  徐向晏 《物理学报》2016,65(1):18502-018502
基于条纹相机的非推扫式激光雷达可以实现三维多光谱荧光及偏振成像,克服了传统雷达技术中由于目标和搭载平台之间相对移动形成的图像畸变,图像刷新率高,也便于小型化.本文针对这一新技术发展的需求设计了一款大面积(阴极有效面积?25)、超小型(阴极到荧光屏净尺寸为100 mm)、无栅网、球面阴极、球面荧光屏的条纹管,利用电子轨迹追踪法理论分析了偏转板位置对偏转灵敏度和空间分辨率的影响.动态分析演示了从阴极面狭缝上同时出发的光电子在条纹管内部不同飞行阶段的时间畸变过程,给出了条纹管在扫描工作模式下狭缝像弯曲所对应的定量时间畸变值.该条纹管极限时间分辨率优于30 ps,在其阴极狭缝长28 mm的范围内,边缘动态空间分辨率大于10 lp/mm,阴极狭缝为30 mm×50μm时条纹管的动态时间分辨率优于50 ps,放大倍率为1.2.  相似文献   

14.
 通过分析影响变像管性能的主要因素,以提高其时间分辨率、空间分辨率和动态范围为优化思路,确定了在扫描变像管中荧光屏邻近区域引入等径螺旋电极以产生纵向均匀加速场的优化方案。分析得知,该优化结构可以在几方面改善变像管的性能:增加粒子到达荧光屏的纵向速度、减小粒子通过偏转板与荧光屏之间区域的渡越时间和渡越时间弥散、提高荧光屏的亮度。在横向约束带电粒子束的发散,通过减小空间电荷像差而改善电子光学系统的空间分辨率。另外,附加电极的引入也为降低加速阳极电位和偏转电极电位从而提高偏转系统的灵敏度提供了一定的空间。  相似文献   

15.
本文描述了一种新型皮秒同步扫描变像管的设计特点及实验结果。其静态空间分辨率为50lp/mm,时间分辨率为1.1ps。  相似文献   

16.
 为获得能够实际应用的飞秒时间分辨软X射线变像管,提出并完成了一种新的扫描变像管管型的理论设计。新管型采用五电极平面对称静电柱透镜,它易于对电子束进行强聚焦,且没有轴对称透镜的电子束聚焦交叉点,由此可以缩短变像管长度,减小渡越时间弥散和抑制空间电荷效应,从而提高动态范围和时间分辨率。通过模拟计算得到:在光电子初能量色散半高宽为1.6 eV、狭缝面积为10 mm×20 μm、时间分辨能力为500 fs时,软X射线变像管有用的动态范围约100倍。  相似文献   

17.
通过理论计算研究装架精度对条纹管性能的影响.计算条纹管偏差装架时的电子轨迹;计算条纹管偏差装架时的空间调制函数以及阴极面处圆图案在最佳相面处的图像,从而研究条纹管装架过程中各电极的偏差安装对条纹管空间分辨率、图像畸变程度的影响.结果表明.各电极的同轴度以及电极筒本身的加工精度是影响条纹管性能指标尤其是空间分辨率的主要因素.  相似文献   

18.
田丽萍  李立立  温文龙  王兴  陈萍  卢裕  王俊锋  赵卫  田进寿 《物理学报》2018,67(18):188501-188501
针对无人机载及星载激光成像雷达系统对条纹管的小型化、高空间分辨率与大探测面积的应用需求,研制了一台具有高边缘空间分辨能力、高亮度增益的小型条纹相机.采用球面光电阴极、球面荧光屏技术提高了条纹相机的边缘空间分辨率和探测面积,有利于增大激光成像雷达的探测视场;采用狭缝型加速电极代替传统栅网电极,有利于提高条纹相机的电耐性和可靠性;设计了加载高达-15 kV工作电压的像缩小型条纹管,增大了条纹管的亮度增益,有助于增大激光雷达系统的探测距离.测试结果显示:在有效工作面积16 mm×2 mm内,条纹管静态空间分辨率高于29.3 lp/mm@MTF=5%(MTF表示调制传递函数),亮度增益高达39.4.条纹相机光电阴极处静态空间分辨率高于15 lp/mm@CTF=11.64%(CTF表示对比度传递函数);边缘动态空间分辨率高于9.8 lp/mm@CTF=5.51%;时间分辨率优于54.6 ps@Tscreen=4.3 ns(Tscreen为全屏时间)且在整个工作面积内具有较高的一致性;动态范围为345:1@54.6 ps.同时,为满足不同的景深及探测精度需求,相机设置六个扫描档位,可以实现不同扫速下的超快速目标诊断.该条纹相机在无人机载及星载激光成像雷达探测中具有潜在的实用价值.  相似文献   

19.
条纹管激光成像雷达条纹图像噪音分析与处理   总被引:4,自引:2,他引:2  
从条纹管激光成像雷达的结构和成像原理出发,讨论了各种噪音来源、噪音特点、影响因素、对最终图像的贡献大小和抑制方法.通过条纹管激光成像雷达阶梯目标扫描成像实验结果分析,噪音源理论分析得到了验证.结合条纹图像处理的特殊目的,通过对比几种边界保持类平滑滤波算法,得出K近邻平滑均值滤波器具有更低的时间复杂度和空间复杂度和更好的滤噪效果,当取N=7,K=25时,可以在允许的处理时间内极大地提高条纹图像信噪比,然后,利用阈值算法有效滤除了背景噪音,最终成功地从复杂的噪音中提取到了条纹数据.这项工作为后续的目标像重构奠定了基础,并指出了下一步工作的方向和重点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号