首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Nanotechnology research has experienced growth rapid in knowledge and innovations; it also attracted significant public funding in recent years. Several countries have recognized nanotechnology as a critical research domain that promises to revolutionize a wide range of fields of applications. In this paper, we present an analysis of the funding for nanoscale science and engineering (NSE) at the National Science Foundation (NSF) and its implications on technological innovation (number of patents) in this field from 2001 to 2004. Using a combination of basic bibliometric analysis and content visualization tools, we identify growth trends, research topic distribution, and the evolution in NSF funding and commercial patenting activities recorded at the United States Patent Office (USPTO). The patent citations are used to compare the impact of the NSF-funded research on nanotechnology development with research supported by other sources in the United States and abroad. The analysis shows that the NSF-funded researchers and patents authored by them have significantly higher impact based on patent citation measures in the four-year period than other comparison groups. The NSF-authored patent impact is growing faster with the lifetime of a patent, indicating the long-term importance of fundamental research.  相似文献   

2.
Huang  Zan  Chen  Hsinchun  Yip  Alan  Ng  Gavin  Guo  Fei  Chen  Zhi-Kai  Roco  Mihail C. 《Journal of nanoparticle research》2003,5(3-4):333-363
Nanoscale science and engineering (NSE) and related areas have seen rapid growth in recent years. The speed and scope of development in the field have made it essential for researchers to be informed on the progress across different laboratories, companies, industries and countries. In this project, we experimented with several analysis and visualization techniques on NSE-related United States patent documents to support various knowledge tasks. This paper presents results on the basic analysis of nanotechnology patents between 1976 and 2002, content map analysis and citation network analysis. The data have been obtained on individual countries, institutions and technology fields. The top 10 countries with the largest number of nanotechnology patents are the United States, Japan, France, the United Kingdom, Taiwan, Korea, the Netherlands, Switzerland, Italy and Australia. The fastest growth in the last 5 years has been in chemical and pharmaceutical fields, followed by semiconductor devices. The results demonstrate potential of information-based discovery and visualization technologies to capture knowledge regarding nanotechnology performance, transfer of knowledge and trends of development through analyzing the patent documents.  相似文献   

3.
The patent citation networks are described using critical node, core network, and network topological analysis. The main objective is understanding of the knowledge transfer processes between technical fields, institutions and countries. This includes identifying key influential players and subfields, the knowledge transfer patterns among them, and the overall knowledge transfer efficiency. The proposed framework is applied to the field of nanoscale science and engineering (NSE), including the citation networks of patent documents, submitting institutions, technology fields, and countries. The NSE patents were identified by keywords “full-text” searching of patents at the United States Patent and Trademark Office (USPTO). The analysis shows that the United States is the most important citation center in NSE research. The institution citation network illustrates a more efficient knowledge transfer between institutions than a random network. The country citation network displays a knowledge transfer capability as efficient as a random network. The technology field citation network and the patent document citation network exhibit a␣less efficient knowledge diffusion capability than a random network. All four citation networks show a tendency to form local citation clusters.  相似文献   

4.
Nanotechnology holds the promise to revolutionize a wide range of products, processes and applications. It is recognized by over sixty countries as critical for their development at the beginning of the 21st century. A significant public investment of over $1 billion annually is devoted to nanotechnology research in the United States. This paper provides an analysis of the National Science Foundation (NSF) funding of nanoscale science and engineering (NSE) and its relationship to the innovation as reflected in the United States Patent and Trade Office (USPTO) patent data. Using a combination of bibliometric analysis and visualization tools, we have identified several general trends, the key players, and the evolution of technology topics in the NSF funding and commercial patenting activities. This study documents the rapid growth of innovation in the field of nanotechnology and its correlation to funding. Statistical analysis shows that the NSF-funded researchers and their patents have higher impact factors than other private and publicly funded reference groups. This suggests the importance of fundamental research on nanotechnology development. The number of cites per NSF-funded inventor is about 10 as compared to 2 for all inventors of NSE-related patents recorded at USPTO, and the corresponding Authority Score is 20 as compared to 1.8.  相似文献   

5.
With the new brilliant neutron sources and the developments of novel optical elements, neutron spin echo (NSE) spectroscopy evolves to tackle new problems and scientific fields. The new developments pave the way to complex experimental set-ups such as the intensity modulated variant of NSE (IMNSE), a powerful technique which was introduced some 20 years ago but found limited use up to now. With the new compact supermirror or He3 polarizers IMNSE becomes attractive for a broad range of applications in magnetism, soft matter and biology. A novel development along this line is the polarimetric NSE technique, which combines IMNSE and the zero-field polarimeter Cryopad to access components of the scattered polarization that are transverse to the incoming polarization. Polarimetric NSE is the method of choice for studying chiral fluctuations, as illustrated by new results on the reference helimagnet MnSi.  相似文献   

6.
For classical solutions of the incompressible Navier-Stokes equations (NSE) the energybalance between kinetic energy, work done by external forces, and viscous dissipation holds rigorously true. It is shown in this paper that standard Galerkin approximations violate energy balance in the case of plane Couette flow, whereas Poiseuille flow turns out to be energy consistent at any cutoff. The main reason for this discrepancy is seen in the different boundary conditions between the stationary linear shear flow and its disturbances. In our analysis, essentially, we introduce an auxiliary external force field which enforces the finite dimensional Galerkin approximation to fulfil the NSE. It is exemplarily demonstrated how the energy discrepancy decreases when the number of disturbed modes is increased which couple to the stationary shear flow.  相似文献   

7.
Expansion of a detection area is an effective method to increase the measurement efficiency of a neutron spin echo (NSE) spectrometer as well as other spectrometers. For this purpose, we installed a new π/2 spin flipper and Fresnel coil of iNSE spectrometer at JRR-3, Tokai, Japan, for wide-area data acquisition. In this study, we propose a data reduction method to correct the phase inhomogeneity due to the path difference of neutrons on the large detection area. This method can convert many NSE signals at small areas to one NSE signal at a large area with taking the phase offset due to the phase inhomogeneity into account. The measurement efficiency increased by approximately one order of magnitude as a result of the detection area expansion.  相似文献   

8.
The paper considers the dynamics of dark charged solitons (vortices) described by the two-dimensional (2D) nonlinear Schrödinger equation (NSE) with a repulsive potential. The dynamics of these point-like vortices in the NSE is quite different in comparison with the vortices in an incompressible liquid because of the possibility of wave-like emission of energy, momentum, and angular momentum in the first case. Another important feature is the characteristic scale of the problem, namely the screening parameter. Related problems of the collapse of a vortex dipole and the decay of a multicharged vortex in a region bounded by an absolutely reflecting shell are investigated both analytically and numerically. The conditions and scaling of a vortex dipole collapse and the limitations on the decay of a multicharge dipole in a bounded region are obtained.  相似文献   

9.
10.
制备红色硅氮化物发光材料的专利综述   总被引:1,自引:1,他引:0  
张亚平 《发光学报》2015,36(2):135-140
随着LED技术的发展,红色硅氮化合物M2Si5N8(M=Ca,Sr,Ba)发光材料逐渐成为了重要的三基色发光材料,有关M2Si5N8发光材料的专利申请逐渐增加,其广阔的应用前景已经引起国内外极大的关注。为了更全面地把握M2Si5N8发光材料的专利申请态势,有利于科学研究和技术进步,本文首次综述了M2Si5N8发光材料的专利申请量和重要申请人,以及该材料的制备工艺方面的基础发明专利的技术演进。从改善红色硅氮化合物M2Si5N8发光性能的角度,对该材料的制备方法进行了分类,并分析了不同方法的优缺点,归纳了有关该材料制备方面的发明点。该综述有助于为本领域技术人员了解发光材料相关行业的技术发展动态、进行专利的有效开发和保护提供一些启示。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号