首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
提出了一种基于压电陶瓷闭环控制的线性可调谐环形腔光纤激光器。光纤激光器环形腔结构中光纤光栅固定在压电陶瓷上,通过控制压电陶瓷改变光纤光栅波长,从而改变环形腔光纤激光器的波长,构成基于压电陶瓷的可调谐环形腔光纤激光器。应变传感器贴附在压电陶瓷上,实时监测压电陶瓷的步长变化,通过惠斯顿桥式电路反馈给驱动控制系统,并补偿和修正压电陶瓷固有的磁滞和蠕变特性,形成压电陶瓷闭环控制系统。实验结果表明基于压电陶瓷闭环控制的可调谐环形腔光纤激光器调谐线性度好,波长调谐范围可达0.9 nm,线宽为4 k Hz,波长稳定性为±0.01 nm,功率稳定性为±0.3 d B。  相似文献   

2.
针对压电陶瓷的压电系数实验测量中仪器调节的困难,通过放置一个三面箱体辅助仪器来改善对光路的调节,同时在给压电陶瓷施加电压的电路中接入电压报警器,有效控制施加在压电陶瓷上的电压大小,以此避免压电陶瓷的疲劳受损乃至被烧坏。  相似文献   

3.
以Pb(Zr_(1–x)Ti)x)O)3(PZT)为代表的铅基压电陶瓷因为具有良好的压电性能和机电耦合性能已被广泛应用于科技、工业、军事以及日常生活中.但是, PZT基陶瓷中Pb的含量超过了60%(质量比),在生产、使用及废弃处理过程中都会给人类生态环境造成严重损害.因此,发展无铅压电陶瓷已成为世界压电陶瓷研究的热点之一.铌酸钾钠(K_(0.5)Na_(0.5))NbO_3 (KNN)无铅压电陶瓷因为具有较为优异的压电性能以及较高的居里温度,被认为是最可能取代铅基压电陶瓷的材料体系之一.经过研究者们的努力工作,改性后的KNN基无铅压电陶瓷压电性能已经接近或超过了某些铅基压电陶瓷的性能.本文综合介绍了具有高压电活性的KNN基无铅压电陶瓷国内外的研究进展,重点阐述了高性能铌酸钾钠基无铅压电陶瓷制备工艺及相关理论基础的研究进展,并就今后铌酸钾钠基无铅压电陶瓷研究发展的方向及前景提出建议.  相似文献   

4.
压电陶瓷是多畴压电材料,在极化之前从宏观上看并不显压电性;通过在直流电场中的极化可以使其电畴作定向排列,从而使陶瓷显压电性.采用声发射技术监测压电陶瓷极化时有无声发射产生和声发射的情况,可以掌握压电陶瓷在极化过程中电畴的动态特性;这对于研究压电陶瓷的电畴结构和极化工艺将是有益的。  相似文献   

5.
针对压电陶瓷驱动器的非线性应变,以压电陶瓷微位移驱动原理为基础,分析了扫频激光器腔长控制原理;在硬件时钟的定时下,分析了压电陶瓷的驱动特性,并通过调整驱动信号的步长电压来调节压电陶瓷的非线性。设计了基于虚拟仪器的控制系统,并对线性化方法进行了原理分析和实验。实验结果表明,该测量系统可以使压电陶瓷在其伸长范围内线性地伸长。  相似文献   

6.
利用劳埃镜干涉测量了压电陶瓷的横向压电系数d31,将平面反射镜安装在压电陶瓷的一端,当压电陶瓷在外加横向电场的作用下产生微米量级的纵向形变时,劳埃镜干涉条纹间距将发生相应的变化,从而放大了压电陶瓷的微小形变.通过相机采集干涉条纹的位置与条纹间距的相关信息,并运用Matlab程序对其进行分析,得到压电陶瓷在不同驱动电压下对应的形变量,计算出该材料的压电系数.  相似文献   

7.
应用迈克耳孙干涉仪研究压电陶瓷的特性   总被引:1,自引:1,他引:0  
李书民  唐军 《物理实验》2008,28(6):42-44
简述了应用迈克耳孙干涉仪测量压电陶瓷压电常量的原理及实验结果分析.简单介绍了研究压电陶瓷振动特性的方法.  相似文献   

8.
研究了周围温度与气流垂直于压电陶瓷对压电陶瓷的正压电效应的影响。  相似文献   

9.
陈俊彦 《应用声学》1984,3(3):43-44,32
本文讨论压电陶瓷强场介电损耗的老化和大功率压电陶瓷极化后的处理问题,以明确强场介电损耗随时间的变化规律和寻找降低强场介电损耗的简易方法.实验结果表明压电陶瓷强场介电损耗随时间延长不断降低,其变化幅度比同温度下其它性能的变化幅度大得多;经r射线辐射后可以降低压电陶瓷的强场介电损耗.  相似文献   

10.
用光纤光栅传感器研究压电陶瓷的特性   总被引:1,自引:1,他引:0  
余有龙  谭玲  邹李刚  王浩 《光子学报》2014,40(7):994-997
提出了一种利用光纤光栅传感器研究压电陶瓷特性的新方法.该方法采用非平衡Michelson扫描干涉仪对光纤光栅传感信号进行相位解调,通过观测波长漂移引起的相移,从而获得压电陶瓷的位移量与所加电压间的关系.实验分析了迟滞特性和蠕变现象,得到了压电陶瓷的电压-位移特性曲线以及蠕变特性曲线.实验表明,光源功率的波动对压电陶瓷迟滞特性不能造成影响且压电陶瓷的蠕变特性与电压方向无关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号