首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Shubnikov–de Haas (SdH) and Hall measurements have been used to investigate a pair of adjacent two-dimensional electron gases (2DEGs) which were formed in two n0.53Ga0.47As quantum-wells, separated by a thin In0.52Al0.48As barrier, grown lattice-matched on InP. This double quantum-well system consists of two asymmetric InGaAs quantum wells, 9 nm and 7 nm respectively, separated by a 4.5 nm InAlAs barrier. The existence of two occupied electronic subbands with differing electron densities can clearly be identified by beating effects in the SdH oscillations. By applying a substrate bias the electron densities can be tuned and the beating is shifted. In the simultaneously performed Hall measurements additional features can be observed: Hall measurements with different total electron densities reveal plateaus for integer filling factors ν (with ν = ν1 + ν2, ν1and ν2both integers, corresponding to the two subbands). Some even filling factors become suppressed and recover with changing electron density. Also, for some densities an odd filling factor is observed. The systematic tuning of the electron densities via the application of a bias voltage to the front gate reveals two Landau fans, one for each electronic system, respectively, crossing each other. The electron densities for both electronic systems can be identified by analysing the SdH spectra. As a function of the front-gate voltage, these densities seem to show evidence for an anticrossing of the two electronic states and therefore for a strong coupling between the states.  相似文献   

2.
3 MeV electron irradiation induced-defects in CuInSe2 (CIS) thin films have been investigated. Both of the carrier concentration and Hall mobility were decreased as the electron fluence exceeded 1×1017 cm−2. The carrier removal rate was estimated to be about 1 cm−1. To evaluate electron irradiation-induced defect, the electrical properties of CIS thin films before and after irradiation were investigated between 80 and 300 K. From the temperature dependence of the carrier concentration in non-irradiated thin films, we obtained ND=1.8×1017 cm−3, NA=1.7×1016 cm−3 and ED=18 meV from the SALS fitting to the experimental data on the basis of the charge balance equation. After irradiation, a new defect level was formed, and NT0=1.4×1017 cm−3 and ET=54 meV were also obtained from the same procedure. From the temperature dependence of Hall mobility, the ionized impurity density was discussed before and after the irradiation.  相似文献   

3.
We have studied experimentally the magneto-transport properties of type-II broken-gap Ga1  xInxAsSb/p-InAs heterostructures with various doping levels of the quaternary layer by Te or Zn. A strong electron channel with high electron mobility was observed at the interface of the heterostructures. Interface roughness scattering was found to dominate the electron mobility atT = 4.2–47 K in samples with an undoped or a slightly doped quaternary layer. A drastic mobility drop with increasing Zn doping level was observed. Shubnikov–de Haas oscillations at low temperatures (1.5–20 K) were studied and a weak anisotropy of magnetoresistance was found. Some important parameters of the heterostructures under study were determined.  相似文献   

4.
In this work we investigate a nonplanar two-dimensional electron gas (2DEG) that allows study of the electronic behaviour in random and sign-alternating magnetic fields. Shubnikov–de Haas oscillations were studied by measuring the magnetoresistance at different angles φ between the field and the substrate. We find that at low magnetic field the position of the oscillation peaks followsBp  Bsin   θ), where θ is the angle between the field and the facets that effectively contribute to magnetoresistance. This is due to the fact that electrons follow different paths depending on the realization of a specific magnetic field.  相似文献   

5.
The dependence of structural and electrical properties of SnO2 films, prepared using spray pyrolysis technique, on the concentration of fluorine is reported. X-ray diffraction, FTIR and scanning electron microscope (SEM) studies have been performed on SnO2:F (FTO) films coated on glass substrates. Measured values of Hall coefficient and resistivity are reported. The 7.5 m% of F doped film had a resistivity of 15 × 10−4 Ω cm, carrier density of 18.7 × 1019 cm−3 and mobility of 21.86 cm2 V−1 S−1. The NiO film was coated on an FTO substrate and its electrochromic (EC) behavior was studied and the results are reported and discussed in this paper.  相似文献   

6.
The electron energy levels in doped nonabrupt GaAs/AlxGa1  xAs single quantum wells 100 Å wide are calculated. Interface widths varying from zero to four GaAs unit cells are taken into account, as well as band bendings of 0–90 meV. It is shown that interface effects on the energy levels are important and sensitive to the level of doping. When interfaces of only two GaAs unit cells and a band bending of 40 meV are considered, the ground-state (first excited state) energy level shifts toward energies as high as 4 meV (20 meV).  相似文献   

7.
Well-width dependence of quantum and transport mobilities of electrons in GaAs/GaAlAs multiple quantum wells is studied for wells with widths ranging between 50 Å and 145 Å Experimental results are obtained from the amplitude analysis of the Shubnikov–de Haas (SdH) oscillations and from conventional Hall measurements at temperatures betweenT = 15 K and 4.2 K. A novel technique is employed to estimate, theoretically, the interface roughness parameters from electron quantum and transport lifetimes. The modelling is carried out for a range of layer fluctuations, width (Δ) and lateral size (Λ), as to obtain the best fit to the experimental results for individual samples. Our results indicate that the interface roughness scattering limits equal both quantum and transport mobilities at low temperatures, and that the nature of scattering by interface roughness (small or large angle) depends not only on the size and the width of the fluctuations but also on the distribution of these fluctuations within the samples. Therefore, unlike the predictions of the existing theoretical models, which assume constant values of Δ and Λ for all well widths, the well-width dependence of interface roughness scattering cannot be verified experimentally.  相似文献   

8.
We demonstrate the effectiveness of the giant Zeeman effect in II–VI semimagnetic semiconductors to tune the exciton resonance of quantum wells onto the Fabry–Pérot resonance of a microcavity. A large oscillator strength of 3 × 1013cm−2per quantum well is deduced from the measured 10.6 meV vacuum Rabi splitting.  相似文献   

9.
《Current Applied Physics》2015,15(11):1478-1481
The internal field of GaN/AlGaN/GaN heterostructure on Si-substrate was investigated by varying the thickness of an undoped-GaN capping layer using electroreflectance spectroscopy. The four samples investigated are AlGaN/GaN heterostructure without a GaN cap layer (reference sample) and three other samples with GaN/AlGaN/GaN heterostructures in which the different thickness of GaN cap layer (2.7 nm, 7.5 nm, and 12.4 nm) has been considered. The sheet carrier density (ns) of a two-dimensional electron gas has decreased significantly from 4.66 × 1012 cm−2 to 2.15 × 1012 cm−2 upon deposition of a GaN capping layer (12.4 nm) over the reference structure. Through the analysis of internal fields in each GaN capping and AlGaN barrier layers, it has been concluded that the undiminished surface donor states (ns) of a reference structure and the reduced ns caused by the Au gate metal are approximately 5.66 × 1012 cm−2 and 1.08 × 1012 cm−2, respectively.  相似文献   

10.
《Current Applied Physics》2010,10(3):904-909
An electrosynthesis process of hydrophilic polyaniline nanofiber electrode for electrochemical supercapacitor is described. The TGA–DTA study showed polyaniline thermally stable up to 323 K. Polyaniline nanofibers exhibit amorphous nature as confirmed from XRD study. Smooth interconnected fibers having diameter between 120–125 nm and length typically ranges between 400–500 nm observed from SEM and TEM analysis. Contact angle measurement indicated hydrophilic nature of polyaniline fibers. Optical study revealed the presence of direct band gap with energy 2.52 eV. The Hall effect measurement showed room temperature resistivity ∼3 × 10−4 Ω cm and Hall mobility 549.35 cm−2V−1 s−1. The supercapacitive performance of nanofibrous polyaniline film tested in 1 M H2SO4 electrolyte and showed highest specific capacitance of 861 F g−1 at the voltage scan rate of 10 mV/s.  相似文献   

11.
Zinc delta-doped GaAs and pseudomorphic GaAs/In}0.2Ga0.8As heterostructures grown by low-pressure metalorganic chemical vapour deposition have been demonstrated. The influence of delta-doping period and spacer thickness on two-dimensional hole gas concentrations and hole mobility was studied. From secondary-ion mass spectroscopy and Hall measurement, we conclude that zinc delta-doping can form an excellent abrupt profile (full-width at half maximum is of 10 nm) and offer a high two-dimensional hole gas sheet density (as high as 1 × 1013cm−2) By adopting a strained InGaAs material as the active channel and by carefully modulating the spacer layer thickness, one can obtain a significantly enhanced hole mobility.  相似文献   

12.
Transparent glass–ceramics containing zinc–aluminum spinel (ZnAl2O4) nanocrystals doped with tetrahedrally coordinated Co2+ ions were obtained by the sol–gel method for the first time. The gels of composition SiO2–Al2O3–ZnO–CoO were prepared at room temperature and heat-treated at temperature ranging 800–950 °C. When the gel samples were heated up to 900 °C, ZnAl2O4 nanocrystals were precipitated. Co2+ ions were located in tetrahedral sites in ZnAl2O4 nanocrystals. X-ray diffraction analysis shows that the crystallite sizes of ZnAl2O4 crystal become large with the heat-treatment temperature and time, and the crystallite diameter is in the range of 10–15 nm. The dependence of the absorption and emission spectra of the samples on heat-treatment temperature were presented. The difference in the luminescence between Co2+ doped glass–ceramic and Co2+ doped bulk crystal was analysed. The crystal field parameter Dq of 423 cm−1 and the Racah parameters B of 773 cm−1 and C of 3478.5 cm−1 were calculated for tetrahedral Co2+ ions.  相似文献   

13.
We report the use of strain-balanced quantum-well structures to generate high carrier density, high mobility layers suitable for power field effect transistor (FET) applications. Standard designs of modulation-doped heterojunctions have a sheet carrier density limited to a maximum of ∼3 ×  1012cm−2, while doped channel devices allow higher densities, but with degraded mobility. By combining the technique of delta-doping with the use of a compositionally graded InGaAs quantum well, grown strain balanced on InP, high mobilities and excellent saturation drift velocities have been obtained for sheet densities of 4–5 ×  1012cm−2. This paper describes the structure and electrical properties of the layers and assesses their potential for FETs.  相似文献   

14.
We have performed magneto-transport experiments in modulation-doped Ga0.7In0.3NyAs1−y/GaAs quantum wells with nitrogen mole fractions 0.4%, 1.0% and 1.5%. Classical magnetotransport (resistivity and low-field Hall effect) measurements have been performed in the temperatures between 1.8 and 275 K, while quantum Hall effect measurements in the temperatures between 1.8 and 47 K and magnetic fields up to 11 T.The variations of Hall mobility and Hall carrier density with nitrogen mole fractions and temperature have been obtained from the classical magnetotransport measurements. The results are used to investigate the scattering mechanisms of electrons in the modulation-doped Ga0.7In0.3NyAs1−y/GaAs quantum wells. It is shown that the alloy disorder scattering is the major scattering mechanism at investigated temperatures.The quantum oscillations in Hall resistance have been used to determine the carrier density, effective mass, transport mobility, quantum mobility and Fermi energy of two-dimensional (2D) electrons in the modulation-doped Ga0.7In0.3NyAs1−y/GaAs quantum wells. The carrier density, in-plane effective mass and Fermi energy of the 2D electrons increases when the nitrogen mole fraction is increased from y=0.004 to 0.015. The results found for these parameters are in good agreement with those determined from the Shubnikov-de Haas effect in magnetoresistance.  相似文献   

15.
Shubnikov–de Haas (SdH) and Hall effect measurements, performed in the temperature range between 3.3 and 20 K and at magnetic fields up to 2.3 T, have been used to investigate the electronic transport properties of lattice-matched In0.53Ga0.47As/In0.52Al0.48As heterojunctions. The spacer layer thickness (tS) in modulation-doped samples was in the range between 0 and 400 Å. SdH oscillations indicate that two subbands are already occupied for all samples except for that withtS =  400 Å. The carrier density in each subband, Fermi energy and subband separation have been determined from the periods of the SdH oscillations. The in-plane effective mass (m * ) and the quantum lifetime (τq) of 2D electrons in each subband have been obtained from the temperature and magnetic field dependences of the amplitude of SdH oscillations, respectively. The 2D carrier density (N1) in the first subband decreases rapidly with increasing spacer thickness, while that (N2) in the second subband, which is much smaller thanN1 , decreases slightly with increasing spacer thickness from 0 to 200 Å. The in-plane effective mass of 2D electrons is similar to that of electrons in bulk In0.53Ga0.47As and show no dependence on spacer thickness. The quantum mobility of 2D electrons is essentially independent of the thickness of the spacer layer in the range between 0 and 200 Å. It is, however, markedly higher for the samples with a 400 Å thick spacer layer. The quantum mobility of 2D electrons is substantially smaller than the transport mobility which is obtained from the Hall effect measurements at low magnetic fields. The transport mobility of 2D electrons in the first subband is substantially higher than that of electrons in the second subband for all samples with double subband occupancy. The results obtained for transport-to-quantum lifetime ratios suggest that the scattering of electrons in the first subband is, on average, forward displaced in momentum space, while the electrons in the second subband undergo mainly large-angle scattering.  相似文献   

16.
《Current Applied Physics》2010,10(2):655-658
We have quantitatively investigated the Hall effect in [Co, CoFe/Pt] multilayer films. The [Co, CoFe/Pt] multilayers exhibit large spontaneous Hall resistivity (ρH) and Hall angle (ρH/ρ). Even though the Hall resistivity in [Co, CoFe/Pt] multilayer films (2.7–4 × 10−7 Ω cm) is smaller than that of amorphous RE–TM alloy films which show large spontaneous Hall resistivity (<2 × 10−6 Ω cm), the Hall angle of multilayer (6–8%) is almost twice than that in amorphous rare earth–transition metal alloy films (∼3%). The Hall angle provides evidence of the effects of the exchange interaction of the Hall scattering. The exchange is between conduction electron spins and the localized spins of the transition metal. The large Hall angle of [Co, CoFe/Pt] multilayer can be considered due to the high spin polarization and high Curie temperature of Co and CoFe transition metal layers. Even though the role of interfaces and surfaces in the magnetic properties of multilayer films may dominate that of the bulk, the Hall effects in [Co, CoFe/Pt] multilayer may be mainly dominated by the bulk effect.  相似文献   

17.
Lightly doped La2−xSrxCuO4 (x = 0.04) nanoparticles with different particle sizes have been successfully prepared by a sol–gel method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared transmission (IR) spectra and superconducting quantum interference device (SQUID) magnetometer. All samples are single phase and have an orthorhombic unit cell. As the particle size reduces, it is found that the IR band at around 685 cm−1 corresponding to the in-plane Cu–O asymmetrical stretching mode shifts to higher frequency and the magnetization exhibits a large enhancement at low temperature. The magnetic susceptibility of all samples follows a modulated Curie law between ∼20 K and ∼100 K and the Curie constant displays a strong dependence on the particle size. It is suggested that as the particle size decreases surface effects should play an important role in the magnetic properties of the nanoparticles.  相似文献   

18.
《Solid State Ionics》2006,177(19-25):1757-1760
The oxygen ion and electron transport in SrFe1−xScxO3−δ  (x = 0.1–0.3) system at 700–950 °C were studied analyzing the total conductivity dependencies on the oxygen partial pressure, pO2. The conductivity measurements were performed both under reducing conditions (10 19  pO2  10 8 atm) comprising the electron-hole equilibrium point, and in oxidizing atmospheres (10 5  pO2  0.5 atm) which are characterized by extensive variations of the oxygen content studied by coulometric titration technique. The incorporation of 10% Sc3+ cations into the iron sublattice suppresses transition of the cubic perovskite phase into vacancy-ordered brownmillerite, thus improving ion conduction at temperatures below 850 °C. When scandium content increases, the ion conductivity becomes considerably lower. The hole mobility is thermally-activated and varies in the range of 0.001 to 0.05 cm2 V 1 s 1, increasing with oxygen concentration and decreasing on Sc doping.  相似文献   

19.
《Solid State Ionics》2009,180(40):1683-1689
The complex perovskite (Pr0.75Sr0.25)1  xCr0.5Mn0.5O3  δ (PSCM) has been prepared and studied as possible anode material for high-temperature solid oxide fuel cells (SOFCs). PSCM exhibits GdFeO3-type structure and is both physically and chemically compatible with the conventional YSZ electrolyte. The reduction of PSCM resulted in structural change from orthorhombic Pbnm to cubic Pm-3m. Selected area electron diffraction (SAED) analysis on the reduced phases indicated the presence of a √2 × √2 × 2 superlattice. The total conductivity values of ∼ 75% dense Pr0.75Sr0.25Cr0.5Mn0.5O3  δ at 900 °C in air and 5% H2/Ar are 9.6 and 0.14 S cm 1 respectively. The conductivity of PSCM drops with decreasing Po2 and is a p-type conductor at all studied Po2. The average TEC of Pr0.75Sr0.25Cr0.5Mn0.5O3  δ is 9.3 × 10 6 K 1, in the temperature range of 100–900 °C and is close to that of YSZ electrolyte. The anode polarization resistance of PSCM in wet 5%H2 is 1.31 Ω cm2 at 910 °C and in wet CH4 at 930 °C; the polarization resistance is 1.29 Ω cm2. PSCM was unstable at 900 °C in unhumidified hydrogen. Cell performance measurements carried out using graded PSCM and La0.8Sr0.2MnO3 as anode and cathode respectively yielded a maximum power density of 0.18 W cm 2 in wet 5%H2/Ar at 910 °C and the corresponding current density was 0.44 A cm 2 at 0.4 V. The activation energy for the electrochemical cell operating in wet (3% H2O) 5%H2/Ar fuel is 85 kJ mol 1.  相似文献   

20.
《Solid State Ionics》2006,177(3-4):333-341
A study of LiFePO4-based electrodes prepared through various synthesis conditions is presented. From X-Ray diffraction, high resolution transmission electron microscopy, electrochemical Li+ extraction/insertion and electrical conductivity data we conclude that the use of starting precursors such as Li2CO3, FeC2O4·2H2O and/or Nb(OC6H5)5 produces LiFePO4-based composites containing significant amounts of carbon. We never succeeded in doping LiFePO4 with Nb to yield Li1−xNbxFePO4 but produced, instead, crystalline β-NbOPO4 and/or an amorphous (Nb, Fe, C, O, P) “cobweb” around LiFePO4 particles which is responsible for superior electrochemical activity. AC-conductivity measurements conclude to a total electrical conductivity of ∼10 9 S cm 1 at 25 °C with an activation energy of ca. 0.65 eV for pure LiFePO4 and LiFePO4/β-NbOPO4 composites. C-containing LiFePO4 samples, including those that were tentatively but unsuccessfully doped with Nb, are much more conductive (up to 1.6 · 10 1 S cm 1) with an activation energy ΔE∼0.08 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号