首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Xiujing Han 《Physics letters. A》2009,373(40):3643-3649
By employing a special feedback controlling scheme, a hyperchaotic Lorenz system with the structure of two time scales is constructed. Two kinds of bursting phenomena, symmetric fold/fold bursting and symmetric sub-Hopf/sub-Hopf bursting, can be observed in this system. Their respective dynamical behaviors are investigated by means of slow-fast analysis. In particular, symmetric fold/fold bursting is of focus-focus type, namely, both the up-state and the down-state are stable focus, which is different from the usual fold/fold bursting; Symmetric sub-Hopf/sub-Hopf bursting is also of focus-focus type, which has not been reported in previous work. Furthermore, phase plane analysis has been introduced to explore the evolution details of the fast subsystem for symmetric sub-Hopf/sub-Hopf bursting. With the variation of the parameter, symmetric sub-Hopf/sub-Hopf bursting can evolve to symmetric chaotic bursting or even hyperchaos.  相似文献   

2.
We investigated the synchronization dynamics of a coupled neuronal system composed of two identical Chay model neurons. The Chay model showed coexisting period-1 and period-2 bursting patterns as a parameter and initial values are varied. We simulated multiple periodic and chaotic bursting patterns with non-(NS), burst phase(BS), spike phase(SS),complete(CS), and lag synchronization states. When the coexisting behavior is near period-2 bursting, the transitions of synchronization states of the coupled system follows very complex transitions that begins with transitions between BS and SS, moves to transitions between CS and SS, and to CS. Most initial values lead to the CS state of period-2 bursting while only a few lead to the CS state of period-1 bursting. When the coexisting behavior is near period-1 bursting, the transitions begin with NS, move to transitions between SS and BS, to transitions between SS and CS, and then to CS. Most initial values lead to the CS state of period-1 bursting but a few lead to the CS state of period-2 bursting. The BS was identified as chaos synchronization. The patterns for NS and transitions between BS and SS are insensitive to initial values. The patterns for transitions between CS and SS and the CS state are sensitive to them. The number of spikes per burst of non-CS bursting increases with increasing coupling strength. These results not only reveal the initial value- and parameterdependent synchronization transitions of coupled systems with coexisting behaviors, but also facilitate interpretation of various bursting patterns and synchronization transitions generated in the nervous system with weak coupling strength.  相似文献   

3.
Ordered bursting synchronization and complex propagation are investigated for a ring neuronal network in which each neuron exhibits chaotic bursting behaviour. The neurons become more and more synchronous in chaotic bursting as the synaptic strength is increased. It is shown that excitatory chemical synapses can effectively tame the chaos, and ordered bursting synchronization can be observed as the synaptic strength is further increased. However, synchronization among neurons is weakened as the number of neurons is increased. More importantly, it is shown that ordered bursting synchronization can be turned into spiking synchronization at certain noise intensity. Complex spatio-temporal patterns propagating towards both sides of pacemaker are found in this network before the emergence of spiking synchronization.  相似文献   

4.
A firing pattern transition is simulated in the Leech neuron model, firstly from bursting to co-existence of spiking and bursting and then to spiking. The attraction domain of spiking and bursting for three different parameter values are calculated. Synchronization transition processes of two coupled Leech neurons, one is bursting and the other the co-existing spiking, are simulated for the three parameters. The three synchronization processes appear similar as the coupling strength increases, beginning from non-synchronization to complete synchronization through a complex dynamical procedure, but their detailed processes are different depending on the parameter values. The transition procedure is complex and the complete synchronization is in bursting for larger parameter values, while the process is simple with complete synchronization of spiking for smaller values. The potential relationship between complete synchronization and the attraction domain is also discussed. The results are instructive to understanding the synchronization behaviors of the coupled neuronal system with co-existing attractors.  相似文献   

5.
《中国物理 B》2021,30(5):50502-050502
In traditional viewpoint, excitatory modulation always promotes neural firing activities. On contrary, the negative responses of complex bursting behaviors to excitatory self-feedback mediated by autapse with time delay are acquired in the present paper. Two representative bursting patterns which are identified respectively to be "Fold/Big Homoclinic"bursting and "Circle/Fold cycle" bursting with bifurcations are studied. For both burstings, excitatory modulation can induce less spikes per burst for suitable time delay and strength of the self-feedback/autapse, because the modulation can change the initial or termination phases of the burst. For the former bursting composed of quiescent state and burst, the mean firing frequency exhibits increase, due to that the quiescent state becomes much shorter than the burst. However, for the latter bursting pattern with more complex behavior which is depolarization block lying between burst and quiescent state, the firing frequency manifests decrease in a wide range of time delay and strength, because the duration of both depolarization block and quiescent state becomes long. Therefore, the decrease degree of spike number per burst is larger than that of the bursting period, which is the cause for the decrease of firing frequency. Such reduced bursting activity is explained with the relations between the bifurcation points of the fast subsystem and the bursting trajectory. The present paper provides novel examples of paradoxical phenomenon that the excitatory effect induces negative responses, which presents possible novel modulation measures and potential functions of excitatory self-feedback/autapse to reduce bursting activities.  相似文献   

6.
Pre-Bötzinger复合体是兴奋性耦合的神经元网络,通过产生复杂的放电节律和节律模式的同步转迁参与调控呼吸节律.本文选用复杂簇和峰放电节律的单神经元数学模型构建复合体模型,仿真了与生物学实验相关的多类同步节律模式及其复杂转迁历程,并利用快慢变量分离揭示了相应的分岔机制.当初值相同时,随着兴奋性耦合强度的增加,复合体模型依次表现出完全同步的“fold/homoclinic”,“subHopf/subHopf”簇放电和周期1峰放电.当初值不同时,随耦合强度增加,表现为由“fold/homoclinic”,到“fold/fold limit cycle”、到“subHopf/subHopf”与“fold/fold limit cycle”的混合簇放电、再到“subHopf/subHopf”簇放电的相位同步转迁,最后到反相同步周期1峰放电.完全(同相)同步和反相同步的周期1节律表现出了不同分岔机制.反相峰同步行为给出了与强兴奋性耦合容易诱发同相同步这一传统观念不同的新示例.研究结果给出了preBötzinger复合体的从簇到峰放电节律的同步转迁规律及复杂分岔机制,反常同步行为丰富了非线性动力学的内涵.  相似文献   

7.
季颖  毕勤胜 《中国物理 B》2010,19(8):80510-080510
<正>The dynamics of a non-smooth electric circuit with an order gap between its parameters is investigated in this paper.Different types of symmetric bursting phenomena can be observed in numerical simulations.Their dynamical behaviours are discussed by means of slow-fast analysis.Furthermore,the generalized Jacobian matrix at the non-smooth boundaries is introduced to explore the bifurcation mechanism for the bursting solutions,which can also be used to account for the evolution of the complicated structures of the phase portraits.With the variation of the parameter,the periodic symmetric bursting can evolve into chaotic symmetric bursting via period-doubling bifurcation.  相似文献   

8.
慢变控制下Chen系统的复杂行为及其机理   总被引:1,自引:0,他引:1       下载免费PDF全文
张晓芳  韩清振  陈小可  毕勤胜 《物理学报》2014,63(18):180503-180503
由于Chen系统的控制分析大都是基于同一时间尺度,而两时间尺度耦合问题的相关研究基本上局限于单维慢变量情形.本文探讨了基于慢时间尺度上的Duffing振子,即含有两维慢子系统控制下Chen系统的动力学演化过程.给出了诸如对称式fold/fold、对称式fold/Hopf、对称式homoclinic/homoclinic等不同形式的簇发振荡行为,并揭示了其相应的产生机制,指出慢子系统中两维慢变量的相互影响导致系统产生了类似于周期激励下的簇发行为.  相似文献   

9.
杨卓琴  张璇 《物理学报》2013,62(17):170508-170508
胰岛中间隙连接的胰腺β细胞的簇放电行为对胰岛素分泌起着重要的作用. 本文利用了最小的phantom 簇放电模型, 研究两个电耦合胰腺β细胞具有簇同步的组合簇放电, 其膜电位表现出一个长簇和几个短簇组成的放电簇集和振幅先减小后增大的小振幅阈下振荡的相互转迁. 在两个慢变量和快的膜电位的三维空间中, 分别考虑了中慢变量和慢慢变量作为分岔参数的多层次的快慢动力学分析, 研究这两个时间尺度不同的慢变量如何共同或单独地控制着这种组合簇放电的复杂动力学行为. 特别地, 探讨了耦合强度引起的组合簇放电的每个簇集中短簇个数变化的内在机理. 关键词: 电耦合 具有不同时间尺度的慢变量 组合簇放电 快慢动力学分析  相似文献   

10.
邢雅清  陈小可  张正娣  毕勤胜 《物理学报》2016,65(9):90501-090501
以周期激励下受控Lorenz模型为例, 考察了多平衡态共存下激励频率与系统固有频率之间存在量级差距也即存在频域上的不同尺度时的耦合效应. 由于激励频率远小于系统的固有频率, 因此将整个激励项视为慢变参数, 分析随慢变参数变化下的各种分岔模式及其相应的分岔行为, 指出在一定条件下, 不同平衡点会产生Hopf分岔和fold分岔. 根据分岔条件的不同, 给出了两种典型情况下的簇发振荡, 并通过引入转换相图, 揭示了不同簇发的产生机理, 指出多平衡态和多种分岔共存不仅会导致沉寂态和激发态的多样性, 而且会使得不同沉寂态和激发态之间存在着不同的转换形式.  相似文献   

11.
The output of a dynamical system in a regime of homoclinic chaos transforms from a continuous train of irregularly spaced spikes to clusters of regularly spaced spikes with quiescent periods in between (bursting), provided a low frequency portion of the output is fed back. We provide experimental evidence of such an autonomous bursting by a CO2 laser with feedback. The phenomena here presented are extremely robust against noise and display qualitative analogies with bursting phenomena in neurons.  相似文献   

12.
气泡破碎是自然界和工、农业生产中常见的现象。气泡在破碎过程中因气流流动而产生强烈的扰动,导致破碎时产生强烈的气动声学。该文采用实验和理论相结合的方式对自由空间内悬挂气泡破碎时的声学特性进行了研究。研究发现:随着液体表面张力系数的增加,声发射的特征振幅逐渐增大;随着气泡半径的增加,声发射的特征振幅逐渐增大。理论计算结果与实验结果基本吻合。  相似文献   

13.
The dynamical behaviors of a periodic excited oscillator with multiple time scales in the form that order gap exists between the frequency of the excitation and the natural frequency, are investigated in this Letter. By regarding the whole excitation term as a parameter, bifurcation sets are derived, which divide the generalized parameter space into several regions corresponding to different kinds of dynamics. Different types of bursting phenomena, such as fold/Hopf bursting, fold/Hopf/homoclinic bursting and Hopf/homoclinic bursting, are presented, the mechanism of which is obtained based on the bifurcations of the generalized autonomous system as well as the introduction of the so-called transformed phase portraits. Furthermore, the evolution of the bursting is discussed in details, in which one may find that when the two limit cycles caused by the Hopf bifurcations of the two related equilibrium points interact with each other, homoclinic bifurcation may occur, leading to the merge of the two cycles to form a large amplitude cycle. The homoclinic bifurcation may cause the two asymmetric bursters to merge into a symmetric enlarged burster, in which the large amplitude of the spiking state agrees well with the amplitude of the cycle caused by the homoclinic bifurcation.  相似文献   

14.
The mathematical model of CO oxidation with three time scales on platinum group metals is investigated, in which order gaps between the time scales related to external perturbation and the rates associated with different chemical reaction steps exist. Forced bursters, such as point-point type forced bursting and point-cycle type forced bursting, are presented. The bifurcation mechanism of forced bursting is novel, and the phenomenon where two different kinds of spiking states coexist in point-cycle type forced bursting has not been reported in previous work. A double-parameter bifurcation set of the fast subsystem is explored to reveal the transition mechanisms of different forced bursters with parameter variation.  相似文献   

15.
季颖  毕勤胜 《物理学报》2012,61(1):10202-010202
讨论了四阶广义蔡氏电路在两时间尺度下的动力学行为. 由数值模拟得到了系统在不同参数条件下的周期簇发解和混沌吸引子. 通过引入快慢分析法,从分岔的角度,以周期解为例, 对系统动力学行为产生的机理及其演化规律进行了理论分析和解释, 其结论与数值计算的结果基本符合.  相似文献   

16.
Xia Shi  Qishao Lu 《Physica A》2009,388(12):2410-2419
Burst synchronization and burst dynamics of a system consisting of two map-based neurons coupled through electrical or chemical synapses are discussed. Some basic characteristic quantities are introduced to describe burst synchronization and burst dynamics of neurons. It is observed that excitatory coupling leads to in-phase burst synchronization but inhibitory coupling results in anti-phase one. By using the basic characteristics of burst dynamics, the effects of the intrinsic bursting properties and the coupling schemes on complex bursting behaviors are also presented for both inhibitory and excitatory couplings. The results are instructive to identify bursting behaviors through experimental data.  相似文献   

17.
杨卓琴  陆启韶 《中国物理》2006,15(3):518-525
Neurons at rest can exhibit diverse firing activities patterns in response to various external deterministic and random stimuli, especially additional currents. In this paper, neuronal firing patterns from bursting to spiking, induced by additional direct and stochastic currents, are explored in rest states corresponding to two values of the parameter $V_{\rm K}$ in the Chay neuron system. Three cases are considered by numerical simulation and fast/slow dynamic analysis, in which only the direct current or the stochastic current exists, or the direct and stochastic currents coexist. Meanwhile, several important bursting patterns in neuronal experiments, such as the period-1 ``circle/homoclinic" bursting and the integer multiple ``fold/homoclinic" bursting with one spike per burst, as well as the transition from integer multiple bursting to period-1 ``circle/homoclinic" bursting and that from stochastic ``Hopf/homoclinic" bursting to ``Hopf/homoclinic" bursting, are investigated in detail.  相似文献   

18.
刘晓波  张建润  李普 《中国物理 B》2012,21(5):54301-054301
An acoustic pressure model of bubble bursting is proposed.An experiment studying the acoustic characteristics of the bursting bubble at the surface of a high-viscosity liquid is reported.It is found that the sudden bursting of a bubble at the high-viscosity liquid surface generates N-shape wave at first,then it transforms into a jet wave.The fundamental frequency of the acoustic signal caused by the bursting bubble decreases linearly as the bubble size increases.The results of the investigation can be used to understand the acoustic characteristics of bubble bursting.  相似文献   

19.
The spatiotemporal order and rhythm dynamics of a complex neuronal network with mixed bursting neurons are studied in this paper. A quantitative characteristic, the width factor, is introduced to describe the rhythm dynamics of an individual neuron, and the average width factor is used to characterize the rhythm dynamics of a neuronal network. An r parameter is introduced to denote the ratio of the short bursting neurons in the network. Then we investigate the effect of the ratio on the rhythm dynamics of the neuronal network. The critical value of r is derived, and the neurons in the network always remain short bursting when the r ratio is larger than the critical value.  相似文献   

20.
于海涛  王江  邓斌  魏熙乐 《中国物理 B》2013,22(1):18701-018701
Neuronal networks in the brain exhibit the modular (clustered) property, i.e., they are composed of certain subnetworks with differential internal and external connectivity. We investigate bursting synchronization in a clustered neuronal network. A transition to mutual-phase synchronization takes place on the bursting time scale of coupled neurons, while on the spiking time scale, they behave asynchronously. This synchronization transition can be induced by the variations of inter- and intra- coupling strengths, as well as the probability of random links between different subnetworks. Considering that some pathological conditions are related with the synchronization of bursting neurons in the brain, we analyze the control of bursting synchronization by using a time-periodic external signal in the clustered neuronal network. Simulation results show a frequency locking tongue in the driving parameter plane, where bursting synchronization is maintained, even in the presence of external driving. Hence, effective synchronization suppression can be realized with the driving parameters outside the frequency locking region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号