首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 650 毫秒
1.
The holographic characteristics in phenanthrenequinone and Zinc methylacrylate doped poly-(methyl methacrylate) photopolymers are experimentally studied. The role of ZnMA molecules which is to accelerate the photochemical reaction in material is confirmed by experiment. The doping of ZnMA component results in a higher diffraction efficiency and photosensitivity than typical phenanthrenequinone doped poly-(methyl methacrylate) system. Moreover, the response region and dynamic range are obviously improved.  相似文献   

2.
The photochemical kinetics of phenanthrenequinone (PQ) doped poly (methyl methacrylate) photopolymer in holographic recording was studied theoretically and experimentally. The diffusion of PQ molecules during holographic recording was negligible because of its small diffusion coefficient at room temperature. A photochemical reaction kinetics model of PQ/PMMA was established. The analytical expressions for the temporal variations of transmittance and diffraction efficiency were derived. By fitting the experimental curves, some parameters related with the polymer components were obtained by the proposed model, which can be used to analyze the photochemical process and will be helpful to the optimization of material preparation.  相似文献   

3.
Polarization spectroscopy in the mid-infrared (IRPS) has been applied to the detection of acetylene molecules making use of the asymmetric C-H stretching vibration at around 3 μm. The infrared laser pulses were produced through difference frequency generation in a LiNbO3 crystal pumped by a Nd:YAG and dye laser system. By directly probing the ro-vibrational transitions with IRPS, sensitive detection of molecules with otherwise inaccessible electronic states was realized with high temporal and spatial resolution by using a pulsed laser and a cross-beam geometry. Detection sensitivities of 2 × 1013 molecules/cm3 (10 ppm in 70 mbar gas mixture) of C2H2 were achieved using the P(1 1) line of the (0 1 0(1 1)0)-(0 0 0 00 00) band. The dependence of the IRPS signal on the pump laser fluence, acetylene mole fraction, and buffer gas pressure of Ar, N2, H2, and CO2 has been studied experimentally. The investigation demonstrates the quantitative nature of IRPS for sensitive detection of polyatomic IR active molecules. In order to fully demonstrate the technique for combustion applications, nascent acetylene molecules were measured in a low pressure methane/oxygen flame.  相似文献   

4.
A principal opportunity to operate by current-voltage and electroluminescent-current dependences for the single-layered light-emitting diodes (LED) on the basis of the polyvinylcarbazole (PVK) polymers doped by methoxy-substituted pyrazoloquinoline (PQ) emitting dye chromphore is demonstrated. The principal light-emitting parameters in the architecture ITO/PQ: PVK/Ca (Al) were investigated. The maximally achieved quantum efficiency of the investigated LED was equal to about 0.87% and corresponded to the brightness about the 44 Cd/m2. The absence of blue shift for the electroluminescence (EL) compared to PL may indicate on an absence of near-the-surface exciton diffusion for the methoxy-PQ contrary to the phenyl-methyl-substituted PQ. The quantum chemical calculations have shown principal role of the dye chromophore state dipole moments in the observed carrier kinetics determining the EL.  相似文献   

5.
Porous InP membranes have been prepared by anodization of InP wafers with electron concentration of 1 × 1017 cm−3 and 1 × 1018 cm−3 in a neutral NaCl electrolyte. The internal surfaces of pores in some membranes were modified by electrochemical deposition of gold in a pulsed voltage regime. Photoluminescence and photosensitivity measurements indicate efficient light trapping and porous surface passivation. The photoluminescence and electrical resistivity of the membranes are sensitive to the adsorption of H2 and CO gas molecules. These properties are also influenced by the deposition of Au nanoparticles inside the pores.  相似文献   

6.
Photocatalyst titanium dioxide (TiO2) thin films were prepared using sol-gel process. To improve the photosensitivity of TiO2 at visible light, transition metal of Fe was implanted into TiO2 matrix at 20 keV using the metal plasma ion implantation process. The primary phase of the Fe-implanted TiO2 films is anatase, but X-ray diffraction revealed a slight shift of diffraction peaks toward higher angles due to the substitutional doping of iron. The additional band gap energy levels were created due to the formation of the impurity levels (Fe-O) verified by X-ray photoelectron spectroscopy, which resulted in a shift of the absorption edge toward a longer wavelength in the absorption spectra. The optical band gap energy of TiO2 films was reduced from 3.22 to 2.87 eV with an increase of Fe ion dosages from 0 to 1 × 1016 ions/cm2. The band gap was determined by the Tauc plots. The photocatalysis efficiency of Fe-implanted TiO2 was assessed using the degradation of methylene blue under ultraviolet and visible light irradiation. The calculated density of states for substitutional Fe-implanted TiO2 was investigated using the first-principle calculations based on the density functional theory. A combined experimental and theoretical Fe-implanted TiO2 film was formed, consistent with the experimentally observed photocatalysis efficiency of Fe-implanted TiO2 in the visible region.  相似文献   

7.
A deep ultraviolet femtosecond laser operating at wavelength 258 nm was demonstrated to be effective in trimming fiber Bragg gratings in telecommunication fibers. A smooth tunable resonance wavelength shift of up to 0.52 nm has been observed, corresponding to a refractive index change of ∼5 × 10−4 after an accumulated laser fluence of 63.3 kJ/cm2 at a single pulse fluence of 124 mJ/cm2. The ultrafast laser enhancement of ultraviolet photosensitivity response and modification of anisotropic index profile in silica fiber is a powerful technique to precise control of the performance of fiber Bragg grating devices for applications in optical filtering and polarization mode dispersion management.  相似文献   

8.
Doping of PbS thin films with different metal atoms produce considerable changes in structural and material properties that make them useful in the technology of thin film devices. The goal of this work is to study the effects of doping on the structural, morphological, optoelectronic and transport properties of PbS thin films as a function of Al3+ concentration. Thin films of pure and Al doped PbS nanoparticles are prepared on soda lime glass substrates by chemical bath deposition technique. The Al content in aqueous solution is varied from 0 to 20 mg. XRD analysis of the films revealed significant enhancement in crystallinity and crystallite size up to an optimum concentration of doping. Films are polycrystalline with crystallite size 19–32 nm, having face centered cubic structure. The optical band gap energy exhibits a decreasing trend and is shifted from 2.41 to 1.34 eV with increasing Al content. The room temperature conductivity of the as-deposited PbS films is in the range of 0.78×10−8 to 0.67×10−6(Ω cm)−1 with a maximum for optimum Al content. The Al doped PbS thin film, which we synthesize with optimum Al concentration of 15 mg is found to be a most suitable material for solar control coating applications.  相似文献   

9.
A natural self-assembly process of semiconductor nanoparticles leading to the formation of doped, monocrystalline nanorods with highly enhanced dopant-related luminescence properties is reported. ∼4 nm sized, polycrystalline ZnS nanoparticles of zinc-blende (cubic) structure, doped with Cu+-Al3+ or Mn2+ have been aggregated in the aqueous solution and grown into nanorods of length ∼400 nm and aspect ratio ∼12. Transmission electron microscopic (TEM) images indicate crystal growth mechanisms involving both Ostwald-ripening and particle-to-particle oriented-attachment. Sulphur-sulphur catenation is proposed for the covalent-linkage between the attached particles. The nanorods exhibit self-assembly mediated quenching of the lattice defect-related emission accompanied by multifold enhancement in the dopant-related emission. This study demonstrates that the collective behavior of an ensemble of bare nanoparticles, under natural conditions, can lead to the formation of functionalized (doped) nanorods with enhanced luminescence properties.  相似文献   

10.
Intrinsic, P- and B-doped hydrogenated amorphous silicon thin films were prepared by plasma-enhanced chemical vapor deposition technique. As-deposited samples were thermally annealed at the temperature of 800 °C to obtain the doped nanocrystalline silicon (nc-Si) films. The microstructures, optical and electronic properties have been evaluated for the undoped and doped nanocrystalline films. X-ray photoelectron spectroscopy (XPS) measurements demonstrated the presence of the substitutional boron and phosphorous in the doped films. It was found that thermal annealing can efficiently activate the dopants in films accompanying with formation of nc-Si grains. Based on the temperature-dependent conductivity measurements, it was shown that the activation of dopant by annealing increased the room temperature dark conductivity from 3.4 × 10−4 S cm−1 to 5.3 S cm−1 for the P-doped films and from 1.28 × 10−3 S cm−1 to 130 S cm−1 for the B-doped films. Meanwhile, the corresponding value of conductivity activation energies was decreased from 0.29 eV to 0.03 eV for the P-doped films and from 0.3 eV to 5.6 × 10−5 eV for the B-doped films, which indicated the doped nc-Si films with high conductivity can be achieved with the present approach.  相似文献   

11.
Trivalent samarium ion (Sm3+) doped SU8 polymer materials were synthesized and characterized. Intense red emission at 645 nm was observed under UV laser light excitation. Spectroscopic investigations show that the doped materials are suitable for realizing planar optical waveguide amplifiers. About 100 μm wide multimode Sm3+-doped SU8 channel waveguides were fabricated using a simple UV exposure process. At 250 mW, 351 nm UV pump power, a signal enhancement of ∼7.4 dB at 645 nm was obtained for a 15 mm long channel waveguide.  相似文献   

12.
P doped ZnO films were grown on quartz by radio frequency-magnetron sputtering method using a ZnO target mixed with 1.5 at% P2O5 in the atmosphere of Ar and O2 mixing gas. The as-grown P doped ZnO film showed n-type conductivity, which was converted to p-type after 800 °C annealing in Ar gas. The P doped ZnO has a resistivity of 20.5 Ω cm (p∼2.0×1017 cm−3) and a Hall mobility of 2.1 cm2 V−1 s−1. XRD measurement indicated that both the as-grown and the annealed P doped ZnO films had a preferred (0 0 2) orientation. XPS study agreed with the model that the PZn-2VZn acceptor complex was responsible for the p-type conductivity as found in the annealed P-doped ZnO. Temperature-dependent photoluminescence (PL) spectrum showed that the dominant band is located at 3.312 eV, which was attributed to the free electronic radiative transition to neutral acceptor level (FA) in ZnO. The PZn-2VZn acceptor complex level was estimated to be at EV=122 meV.  相似文献   

13.
The strong 479.1 nm blue cooperative upconversion luminescence of ytterbium Yb3+ ion doped oxyfluoride nanophase vitroceramics (Yb:FOV) is studied in this article. It is found that the 479.1 nm blue cooperative upconversion luminescence strength of Yb(5):FOV is 230 times greater than that of fluoride glass Yb(3):ZBLAN. The large enhancement on cooperative upconversion blue luminescence of this article results from the comprehensive improvement on the aspects of better coupled chance of the Yb3+-Yb3+ cluster, less cross-relaxation, better concentration contribution of Yb3+ activator, non-saturation, and better upconversion luminescence efficiency.  相似文献   

14.
In this work we have investigated the dependence of optical and electrical properties of RF sputtered undoped a-Si:H films and B or P doped a-Si:H films on hydrogen flow rate (FH). Low deposition temperature of 95 °C was used, a process compatible with low-cost plastic substrates. FTIR spectroscopy and ESR measurements were used for the investigation of Si-Hx bonding configurations, and concentrations of hydrogen and dangling bonds. We found that there is a strong correlation between the total hydrogen concentration, the dangling bonds density and the optoelectronic properties of the films. The best photosensitivity value was found to be 1.4 × 104 for the undoped films. The dark conductivity (σD) of the doped layers varied from 5.9 × 10−8 to 6.5 × 10−6 (Ω cm)−1 for different ratios FAr/FH. These variations are attributed to both the different B and P concentrations in the films (according to SIMS measurements) and the enhanced disorder of the films introduced by the large number of inactive impurities. The B doping efficiency is lower compared to the P one. A small photovoltaic effect is also observed in n-i-p solar cells fabricated on polyimide (PI) substrates having ITO as antireflective coating, with an efficiency of 1.54%.  相似文献   

15.
OH and Cl doped Bi4Ge3O12 (BGO) single crystals had been grown by Vertical Bridgman (VB) method. The structure of these crystals was determined by XRD, the transmittance and emission spectra in near infrared region (NIR) were measured at room temperature. 5% OH doped BGO shows a significant emission band peaking around 1181 nm under 808 nm laser diodes (LDs) excitation, and the 5% Cl doped BGO exhibits a relatively weak emission band as well. 100% and 5% OH doped BGO show noticeable emission band centered at about 1346 nm under 980 nm LDs excitation.  相似文献   

16.
Novel composite materials are synthesized by incorporating N-acryloylmorpholine(ACMO) in highly concentrated phenanthrenequinone(PQ) doped poly(methyl methacrylate)(PMMA). The photosensitizer concentration of PQ was increased from 0.7 wt. % to 1.8 wt. %. The doping of ACMO component results in a higher diffraction efficiency and photosensitivity than a typical PQ/PMMA system. The enhanced performance of the material may stem from the ACMO molecules, which might open a new route for improving the holographic performance of the PQ/PMMA photopolymer.  相似文献   

17.
The fusion reactions 48Ca + 154Sm and 16O + 186W leading to the same compound nucleus 202Pb are studied within the framework of an improved isospin dependent quantum molecular dynamics model. The entrance channel mass asymmetry dependence of compound nucleus formation is found by analyzing the shell correction energies, Coulomb barriers and fusion cross sections. The calculated fusion cross sections agree quantitatively with the experimental data. We conclude that the compound nucleus formation is favorable for the system with larger mass asymmetry.  相似文献   

18.
Meso-scale self-assembly of doped semiconductor nanocrystals leading to the formation of monocrystalline nanorods showing enhanced photo- and electro-luminescence properties are reported. Polycrystalline ZnS: Cu+-Al3+ nanoparticles of zinc-blended (cubic) structure with an average size of ∼4 nm were aggregated in aqueous solution and grown into nanorods of length ∼400 nm and aspect ratio ∼12. Transmission electron microscope (TEM) images indicate crystal growth mechanisms involving particle-to-particle oriented-attachment assisted by sulphur-sulphur catenation leading to covalent-linkage. The nanorods exhibit self-assembly dependant luminescence properties such as quenching of the lattice defect-related emissions accompanied by enhancement of dopant-related emission, efficient low-voltage electroluminescence (EL) and super-linear voltage-brightness EL characteristics. This study demonstrates the technological importance of aggregation based self-assembly in doped semiconductor nanosystems.  相似文献   

19.
This paper reports the photosensitivity of poly(methyl methacrylate) (PMMA) and its copolymer doped with trans-4-stilbenemethanol. UV irradiation of the doped-PMMA at 325 nm induced the trans- to cis-isomerization of the dopant. This process was confirmed by 1H NMR spectra of trans-4-stilbenemethanol in CDCL3 solvent before and after irradiation. The isomerization can be initiated by the irradiation with an intensity of 0.62 mW/cm2. Photo-induced refractive index change of −0.0024 was obtained when a PMMA copolymer film doped with 5.1 wt% dopant was exposed to 325 nm light. Lorentz-Lorenz equation was used to estimate the refractive index of a trans-4-stilbenemethanol-PMMA composite and a trans-4-stilbenemethanol-PMMA copolymer composite from the mole refraction and van der Waals volume of each component. A slight elevation of molecular packing coefficient (K) for PMMA and its copolymer containing the dopant implies a denser aggregation as compared to the polymer without the dopant. Long period gratings were created in doped-PMMA films and doped-PMMA copolymer fibers using amplitude mask technique. Gratings were confirmed by microscopic observation and diffraction patterns.  相似文献   

20.
M.R.A. Moghaddam  R. Parvizi  H. Arof  H. Ahmad 《Optik》2011,122(20):1783-1786
The performance of a high power erbium-ytterbium doped fiber amplifier (EYDFA) is investigated experimentally and theoretically. The EYDFA provides a flat gain with an output power higher than 23 dBm in the wavelength region from 1541 to 1565 nm using a multimode pumping at 927 nm. In the theoretical analysis, the rate and power propagation equations are solved to examine the effect of fiber length on the bandwidth of the gain spectra. In the C-band region, the small signal gain of the EYDFA varies from 30 to 34 dB with 10 m long erbium-ytterbium doped fiber (EYDF) while the 927 nm pump power is fixed at 3.5 W. It is shown that the calculated output power is in good agreement with the experimental results, verifying the feasibility of our theoretical model. However, the experimental result shows a relatively lower gain compared to the theoretical result due to the spurious reflection in the cavity and the insertion loss of the EYDF which were neglected in our theoretical model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号