首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TiO2-reduced graphene oxide (RGO) composite was synthesized via a sol-gel process and investigated as an anode material for sodium-ion batteries (SIBs). A remarkable improvement in sodium ion storage with a reversible capacity of 227 mAh g?1 after 50 cycles at 50 mA g?1 is achieved, compared to that (33 mAh g?1) for TiO2. The enhanced electrochemical performance of TiO2-RGO composite is attributed to the larger specific surface area and better electrical conductivity of TiO2-RGO composite. The excellent performance of TiO2-RGO composite enables it a potential electrode material for SIBs.  相似文献   

2.
The nano-TiO2 electrode with a p-n homojunction device was designed and fabricated by coating of the Fe3+-doped TiO2 (p-type) film on top of the nano-TiO2 (n-type) film. These films were prepared from synthesized sol-gel TiO2 samples which were verified as anatase with nano-size particles. The semiconductor characteristics of the p-type and n-type films were demonstrated by current-voltage (I-V) measurements. Results show that the rectifying curves of undoped TiO2 and Fe3+-doped TiO2 sample films were observed from the I-V data illustration for both the n-type and p-type films. In addition, the shapes of the rectifying curves were influenced by the fabrication conditions of the sample films, such as the doping concentration of the metal ions, and thermal treatments. Moreover, the p-n homojunction films heating at different temperatures were produced and analyzed by the I-V measurements. From the I-V data analysis, the rectifying current of this p-n junction diode has a 10 mA order higher than the current of the n-type film. The p-n homojunction TiO2 electrode demonstrated greater performance of electronic properties than the n-type TiO2 electrode.  相似文献   

3.
A LiNi0.6Co0.2Mn0.2O2/reduced graphene oxide (RGO) composite with RGO content of 1.2 % was prepared by a simple spray-drying method instead of high-energy ball milling method. The composite has been characterized by X-ray diffraction, scanning electron microscope, transmission electron microscopy, energy dispersive spectroscopy, and charge/discharge test. The X-ray diffractometry result showed that composite possessed a typical hexagonal structure. The RGO sheets served as efficient electronically conductive frameworks benefitting from its 2D structure and outstanding electronic conductivity. The scanning electron microscope and transmission electron microscopy verified that LiNi0.6Co0.2Mn0.2O2 particles were wrapped with RGO sheets, which facilitated electronic conductivity between particles. The electrochemical results indicated that composite delivered a higher discharge capacity at various discharge rates. The cycling performance was also evaluated. The composite exhibited better cycling performance than pristine sample. Electrochemical impedance spectroscopy showed that the RGO can greatly reduce the charge transfer resistance. The results here gave clear evidence of RGO to improve electrochemical performance.  相似文献   

4.
Recently, there is crucial interest in the design and fabrication of nanocatalysts for efficient decomposition of organic pollutants in wastewater using visible light. This work reports the assembling fabrication of synergetic photocatalytic Au/TiO2/RGO nanostructures by utilizing the reduced graphene oxide (RGO) as substrate material and efficient separator for electrons and holes. The Au/TiO2 nanostructures with a ≈7 nm TiO2 particles size are dispersed uniformly on RGO nanosheets. UV–vis diffuse reflectance spectroscopy verifies that Au/TiO2/RGO nanocomposites show strong absorption of visible light. The degradation efficiency after 1 h for hydroquinone under visible light and UV light is ≈77% and ≈90%, respectively. Under visible light, the calculated apparent rates (k ) of the Au/TiO2/RGO nanocomposites are 0.0112 and 0.0174 min?1 for decomposition of methylene blue and hydroquinone. That are five times greater than that of bare TiO2. The high photocatalytic activity is mainly attributed to the synergy between RGO and Au/TiO2 nanostructure. The strategy of composite nanostructures assembling on RGO is ensured to have a great practicable potential for the designing of high efficient multielement composite nanoparticles catalysts.  相似文献   

5.
Electrical devices involve different types of diode in prospective electronics is of great importance. In this study, p-type Si surface was covered with thin film of TiO2 dispersion in H2O to construct p-Si/TiO2/Al Schottky barrier diode (D1) and the other one with TiO2 dispersion doped with zirconium to construct p-Si/TiO2-Zr/Al diode (D2) by drop-casting method in the same conditions. Electrical properties of as-prepared diodes and effect of zirconium as a dopant were investigated. Current–voltage (IV) characteristics of these devices were measured at ambient conditions. Some parameters including ideality factor (n), barrier height (ΦB0), series resistance (Rs) and interface state density (Nss) were calculated from IV behaviours of diodes. Structural comparisons were based on SEM and EDX measurements. Experimental results indicated that electrical parameters of p-Si/TiO2/Al Schottky device were influenced by the zirconium dopant in TiO2.  相似文献   

6.
The semiconductor behavior of graphene oxide (GO) and reduced graphene oxide (RGO) synthesized by the Hummers method on n-type Si(111) were investigated. Graphene oxide is a product of the oxidation of graphite, during which numerous oxygen functional groups bond to the carbon plane during oxidation. RGO was prepared by adding excess hydrazine to the GO showing p-type semiconductor material behavior. In the C–O bond, the O atom tends to pull electrons from the C atom, leaving a hole in the carbon network. This results in p-type semiconductor behavior of GO, with the carrier concentration dependent upon the degree of oxidation. The RGO was obtained by removing most of the oxygen-containing functionalities from the GO using hydrazine. However, oxygen remaining on the carbon plane caused the RGO to exhibit p-type behavior. The IV characteristics of GO and RGO deposited on n-type Si(111) forming p–n junctions exhibited different turn-on voltages and slope values.  相似文献   

7.
p-Type nickel oxide thin films were prepared by sol-gel method, and their structural, optical and electrical properties were investigated. The Ni(OH)2 sol was formed from nickel (II) acetate tetrahydrate, Ni(CH3COO)2·4H2O, in a mixture of alcohol solution and poly(ethylene glycol), and deposited on an ITO substrate by spin coating followed by different heat treatments in air (50-800 °C). The formation and composition of NiO thin film was justified by EDX analysis. It is found that the thickness of the NiO film calcined at 450 °C for 1 h is about 120 nm with average particle size of 22 nm, and high UV transparency (∼75%) in the visible region is also observed. However, the transmittance is negligible for thin films calcined at 800 °C and below 200 °C due to larger particle size and the amorphous characteristics, respectively. Moreover, the composite electrode comprising n-type TiO2 and p-type NiO is fabricated. The current-voltage (I-V) characteristics of the composite TiO2/NiO electrode demonstrate significant p-type behavior by the shape of the rectifying curve in dark. The effect of calcination temperature on the rectification behavior is also discussed.  相似文献   

8.
Organic/inorganic hybrid solar cells, based on vertically aligned n-type silicon nanowires (n-Si NWs) and p-type conducting polymers (PEDOT:PSS), were investigated as a function of Si conductivity. The n-Si NWs were easily prepared from the n-Si wafer by employing a silver nanodot-mediated micro-electrochemical redox reaction. This investigation shows that the photocurrent-to-voltage characteristics of the n-Si NW/PEDOT:PSS cells clearly exhibit a stable rectifying diode behavior. The increase in current density and fill factor using high conductive silicon is attributed to an improved charge transport towards the electrodes achieved by lowering the device's series resistance. Our results also show that the surface area of the nanowire that can form heterojunction domains significantly influences the device performance.  相似文献   

9.
Thin film heterojuction of the type p-ZnO/n-GaN was prepared by spray pyrolysis and electron beam evaporation technique, respectively. Hall measurements demonstrate the firm p-type conductivity of the p-doped ZnO film. The structural and electrical properties of the p-ZnO/n-GaN heterojunction are investigated by X-ray diffraction (XRD) and current-voltage (I-V) measurements. The XRD shows that the p-ZnO/n-GaN heterojunction is highly crystalline in nature with preferred orientation along the [0001] direction. The current-voltage curve of the heterojunction demonstrates obvious rectifying diode behavior in the dark and under illumination conditions. The ideality factor of the detector was determined in case of forward bias at low voltages and it was found to be 13.35. The turn-on voltage appears at about 1V under forward-biased voltage, and the reverse breakdown voltage is about 4V. It was found that the current of the illumination increases with the increase of bias voltages.  相似文献   

10.
J.C. Fan 《Applied Surface Science》2008,254(20):6358-6361
p-Type ZnO:As films with a hole concentration of 1016-1017 cm−3 and a mobility of 1.32-6.08 cm2/V s have been deposited on SiO2/Si substrates by magnetron sputtering. XRD, SEM, Hall measurements are used to investigate the structural and electrical properties of the films. A p-n homojunction comprising an undoped ZnO layer and a ZnO:As layer exhibits a typical rectifying behavior. Our study demonstrates a simple method to fabricate reproducible p-type ZnO film on the SiO2/Si substrate for the development of ZnO-based optoelectronic devices on Si-based substrates.  相似文献   

11.
Porous silicon (PS) layer was formed by electrochemical anodization on a p-type Si surface. Thereafter, n-type TiO2−x thin film was deposited onto the PS surface by electron-beam evaporation. Pt catalytic layer and Au electrical contacts for further measurements were deposited onto the PS/TiO2−x structure by ion-beam sputtering. Current–voltage characteristic, sensitivity to different concentration of hydrogen and resistance change of obtained structures versus time were examined. Results of measurements have shown that the current–voltage characteristics of structures are similar to that of diode. High sensitivity to hydrogen of obtained structures was also detected. Note that all measurements were carried out at room temperature.  相似文献   

12.
《Current Applied Physics》2015,15(3):213-218
The present work reports the fabrication and detailed electrical properties of Al-doped CdO/Si-nanowire (SiNW) arrays/p-type Si Schottky diodes with and without SiNW surface passivation. It is shown that the interfacial trap states influence the electronic conduction through the device. The experimental results demonstrate that the effects of the dangling bonds at the SiNW surface and Si vacancies at the SiOx/SiNW interface which can be changed by the Si–O bonding on the energy barrier lowering and the charge transport property. The induced dominance transformation from electron traps to hole traps in the SiNWs by controlling the passivation treatment time is found in this study.  相似文献   

13.
CdTe–TiO2–graphene nanocomposites were successfully synthesized via a simple and relatively general hydrothermal method. During the hydrothermal environment, GO was reduced to reduced graphene oxide (RGO), accompanying with the anchoring of TiO2 nanoparticles on the surface of RGO. In the following process, CdTe quantum dots (QDs) were then in situ grown on the carbon basal planes. The morphologies and structural properties of the as-prepared composites were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy and fluorescent spectroscopy. It is hoped that our current work could pave a way towards the fabrication of QDs–TiO2–RGO hybrid materials.  相似文献   

14.
The electrical characteristics of nylon-6 nanofibers incorporated with TiO2 and Fe3O4 nanoparticles were investigated. The resultant nanofibers exhibited good incorporation of nanoparticles. The impregnated TiO2 and Fe3O4 nanoparticles into the nylon-6 nanofibers were confirmed by high resolution transmission electron microscopy (HR-TEM) and energy dispersive X-ray (EDX) spectroscopy studies. The electrical conductivity of the nylon-6 incorporated with TiO2 and Fe3O4 composite nanofibers were higher than that of the pristine nylon-6 nanofibers. The impregnation of TiO2 and Fe3O4 nanoparticles significantly enhanced the electrical property of the composite nanofibers. These polymeric/nanoparticles composite nanofibers structure may open a new direction for future organic electronics.  相似文献   

15.
Boron-doped p-type freestanding diamond (FSD) films were prepared by hot filament chemical vapor deposition (HFCVD) method. The effect of B/C ratio on the electrical properties of FSD films was investigated by Hall effect measurement system. A ZnO/diamond heterojunction diode was fabricated successfully by depositing n-type ZnO films on the p-type FSD substrate by radio-frequency (RF) magnetron sputtering method. The wavelength dependent photoresponse properties of the heterojunction diode were investigated by studying the effect of light illumination on current-voltage (I-V) characteristics and photocurrent spectra at room temperature. The diode showed a significant discrimination between ultraviolet (UV) and the visible light under reverse bias conditions and photoresponse of the device was approximately linear related to the increasing reverse bias voltages.  相似文献   

16.
The photovoltaic properties of heterojunctions of titanium dioxide (TiO2) nanoparticle films with single crystal silicon (c-Si) substrates with different Fermi level (E f) positions were studied. The TiO2 nanoparticles of rutile and anatase structures were studied without any sintering process. To clarify the photovoltaic properties, the characteristics of the heterojunction solar cells of TiO2 nanoparticle films with p-Si and n-Si substrates were investigated, where several Si substrates with different resistivities were used. The IV characteristics of p-Si/TiO2 heterojunction showed the rectifying behavior and photovoltaic effect. The n-Si/TiO2 heterojunction also showed good rectifying characteristics; however, the conversion efficiency was extremely lower than that of p-Si/TiO2 heterojunction. The conversion efficiencies of various Si/TiO2 (rutile) heterojunction solar cells against the Fermi level E f of c-Si showed the maximum in the p-doped region. The photovoltaic properties of the Si/TiO2 heterojunction also depended on the crystal structure of TiO2, and the conversion efficiency of anatase is higher than that of rutile, which was attributed to the higher carrier mobility of anatase.  相似文献   

17.
《Current Applied Physics》2020,20(12):1453-1459
We make a new type of bipolar Schottky diodes using the p-type La2/3Sr1/3VO3 (LSVO)/n-TiO2 heterostructure. The p-type LSVO metal thin films are grown on various substrates using radio frequency magnetron co-sputtering deposition. We find that the LSVO film grown on anatase TiO2 layer produce the lowest resistivity of 0.28 mΩ cm. We discover that the resistivity decreases with decreasing LSVO film thickness for LSVO/TiO2/Si structures. Hall measurements are performed and the dielectric functions of LSVO films are measured. The effective mass of LSVO/TiO2/Si is determined to be 2.54 ± 0.05 m0. The current-voltage curves of the Schottky diodes of p-LSVO/n-TiO2 is measured and is explained using band alignment diagram. We identify a new type of Schottky diode, where both electrons in n-TiO2 and holes in p-LSVO can flow under bias.  相似文献   

18.
Niobium-doped MnO2/reduced graphene oxide (Nb-MnO2/RGO) composite has been successfully synthesized via a simple microwave radiation method. The samples were systematically studied by X-ray diffraction (XRD), thermogravimetric analysis (TG), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), transmission electron microscope (TEM), and electrochemical measurements. As the anode material for lithium-ion batteries, the Nb-MnO2/RGO (molar ratio of Mn/Nb?=?50:1) (NMG50) showed an outstanding reversible discharge capacity of 556.6 mAh g?1 after 50 cycles with a capacity retention of 77% at a charge-discharge rate of 0.1 A g?1 and the reversible discharge capacity can still retain 223.3 mAh g?1 at a current of 1 A g?1, which is much higher than those for Nb-MnO2/RGO (molar ratio of Mn/Nb?=?10:1) (NMG10) and undoped MnO2/RGO (MG). The improved electrochemical performance could be attributed to the proper amount of Nb doping, which could enhance both the conductivity and the structure stability of MnO2.  相似文献   

19.
The contact properties of TiN on p- and n-type Si (1 0 0) obtained by magnetron reactive sputtering were investigated. Schottky diode characteristics were observed on p-type Si (1 0 0) as determined by forward current-voltage (I-V) measurements, but on n-type Si (1 0 0) the reverse I-V relation has shown a nonsymmetrical character. The zero-bias barrier heights evaluated by I-V on both type diodes were in the range of ∼0.60-0.64 V within the range of a few mVs, not more than ∼±(10-30) mV from each other. Incorporation of the effect of the series resistance in the I-V analysis resulted in a significant reduction in the magnitude of the ideality factor of the TiN/p-type specimen. Almost no change has occurred in the barrier height values. The contradictory reports on the TiN/n-type Si (1 0 0) diode characteristics in earlier works have been explained in terms of surface passivation of Si by the HF cleaning solution. It was stated in these reports that following annealing at 673 K the diodes have shown rectifying behavior. It has been speculated, that the nonsymmetrical nature of the TiN/n-Si (1 0 0) showing an intermediate behavior between Ohmic and rectifying behavior is a result of the specimen being exposed to a temperature lower than 673 K during sputtering where no complete depassivation took place. In order to obtain a rectifying behavior of TiN on both n-type and p-type Si surface passivation has to be eliminated.  相似文献   

20.
Pure and Nb-doped titanium oxide thin films were grown on sapphire substrates by pulsed-laser deposition in vacuum (10−7 mbar). The PLD growth leads to titanium oxide thin films displaying a high oxygen deficiency (TiO1.5) compared with the stoichiometric TiO2 compound. The structural and electrical properties (phase, crystalline orientation, nature and concentration of charge carriers, etc.) of these titanium oxide films were studied by XRD measurements and Hall effect experiments, respectively. The undoped TiO1.5 phase displayed a p-type semiconductivity. Doping this titanium oxide phase with Nb5+ leads to an n-type behaviour as is generally observed for titanium oxide films with oxygen deficiency (TiOx with 1.7 < x < 2). Multilayer homojunctions were obtained by the stacking of TiO1.5 (p-type) and Nb-TiO1.5 (n-type) thin films deposited onto sapphire substrates. Each layer is 75 nm thick and the resulting heterostructure shows a good transparency in the visible range. Finally, the I-V curves obtained for such systems exhibit a rectifying response and demonstrate that it is possible to fabricate p-n homojunctions based only on transparent conductive oxide thin films and on a single chemical compound (TiOx).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号