首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
单脉冲BOXCARS技术在瞬态燃烧场测温中的应用   总被引:1,自引:1,他引:0       下载免费PDF全文
 用单脉冲交叉相干反斯托克斯喇曼散射技术测量了两种不同固体燃剂的瞬态燃烧场的温度。对燃烧场进行了优化,给出了在燃烧场中取得的部分典型单脉冲CARS光谱及其理论拟合结果,得到了燃烧场的温度及其随高度的分布;稳定燃烧时两种燃剂燃烧场的温度基本保持不变,平均值分别为2 260,2 090K;测量了实验的纵向空间分辨率。结果表明,BOXCARS技术能较好地完成复杂的瞬态燃烧场温度的测量工作。  相似文献   

2.
湿空气扩散燃烧火焰结构特性研究   总被引:4,自引:0,他引:4  
利用二维粒子成像速度仪(PIV)对钝体燃烧器中的甲烷/湿空气扩散燃烧的速度场进行测量,考察其火焰的结构特性及其内部流动状况。通过对湿空气燃烧流场与普通燃烧流场的对比分析表明,湿空气燃烧情况下,两种燃烧状态的火焰(回流燃烧火焰和中心射流主导火焰)相互转换的燃空速度比(γ)值要比普通燃烧的小;湿空气燃烧使得喷嘴后的同流空气的速度降低,空气的回流作用减弱,燃料更容易冲出回流区,火焰的稳定性能变差。  相似文献   

3.
 报道了采用单次脉冲非稳腔空间增强探测 相干反斯托克斯喇曼散射(USED CARS)技术诊断常压下固体燃剂瞬态燃烧场温度和氮气浓度。采用宽带USED CARS技术,在固体燃剂瞬态燃烧场获得了较高信噪比的单次激光脉冲氮气Q支CARS实验谱,用CARS理论计算软件拟合CARS实验谱,给出了固体燃剂瞬态燃烧场温度和氮气浓度在不同高度的分布,固体燃剂燃烧场温度约2 250K、氮气相对浓度16%~20%。  相似文献   

4.
利用单脉冲激光诱导偏振光谱技术测量了甲烷/空气预混火焰、酒精灯火焰和固体燃剂燃烧场中OH的二维分布。简述了激光诱导偏振光谱技术的基本原理和二维测量的实验方法;通过测量火焰中OH自由基A~2∑~+-X~2∏(0,0)跃迁带中Q1(8)吸收线的强度,获得了燃烧场中OH的二维分布。实验结果对了解火焰构造,研究燃烧机理等有一定的参考价值。  相似文献   

5.
利用同步辐射真空紫外单光子电离结合分子束质谱技术,对当量比φ=1.5的低压预混层流二甲醚火焰进行了实验研究。通过测量光电离质谱和光电离效率曲线,探测到了二甲醚/氧气/氩气的燃烧产物和火焰中间物,包括不稳定的分子和自由基。通过测量离子信号的空间分布曲线,计算了二甲醚/氧气/氩气火焰的主要物种C_2H_6O、O_2、Ar、H_2、H_2O、CO和CO_2的摩尔分数曲线,以及主要中间物种如CH_2O、C_2H_2、C_2H_4、CH_3OH、C_2H_2O、C_2H_4O、CH_3、CH_4、HCO、C_3H_3和C_3H_4的摩尔分数曲线,并分析了主要中间物种的产生和消耗过程。  相似文献   

6.
利用同步辐射单光子电离和分子束取样技术并结合飞行时间质谱仪,在低压、预混、燃油当量比为1.0情况下研究正庚烷层流火焰的燃烧特性.共检测出24种中间产物,并计算出其摩尔分数.在燃烧反应前期,主要中间产物是酮、醚类物质.在燃烧反应后期,主要中间产物是碳氢化合物,燃烧反应前期的中间产物在燃烧反应后期继续氧化.乙烯在所有中间产物中摩尔分数最大的.另外,火焰中丙炔与苯有极大的相关性.  相似文献   

7.
在定容燃烧弹上,通过实验研究了正高电压对过量空气系数λ不同的CH_4/O_2/N_2预混稀燃火焰的传播和燃烧特性的影响。结果表明:正高压电场可以显著促进稀燃火焰在电场方向上的传播,且促进效应随着电压幅度的增大而增强。当电压幅度为12kV时,对于λ为1.6和1.8的CH_4/O_2/N_2预混气体,其平均火焰传播速率为1.38和1.07m/s,与未加电场时相比,分别增大了133.41%和369.97%;压力峰值分别比未加电场时增大了13.07%和100.81%,压力峰值到达时刻分别提前了35.94%和18.09%。由此可知,正高电压可明显改善CH_4/O_2/N_2稀燃火焰的传播和燃烧特性。  相似文献   

8.
在定容燃烧弹上,通过实验研究了正高电压对过量空气系数λ不同的CH_4/O_2/N_2预混稀燃火焰的传播和燃烧特性的影响。结果表明:正高压电场可以显著促进稀燃火焰在电场方向上的传播,且促进效应随着电压幅度的增大而增强。当电压幅度为12kV时,对于λ为1.6和1.8的CH_4/O_2/N_2预混气体,其平均火焰传播速率为1.38和1.07m/s,与未加电场时相比,分别增大了133.41%和369.97%;压力峰值分别比未加电场时增大了13.07%和100.81%,压力峰值到达时刻分别提前了35.94%和18.09%。由此可知,正高电压可明显改善CH_4/O_2/N_2稀燃火焰的传播和燃烧特性。  相似文献   

9.
现代光谱对燃烧与爆炸过程瞬态温度的实时诊断技术   总被引:3,自引:0,他引:3  
燃烧温度是表征燃烧和爆炸行为和特征的重要参数之一,它将有效地指导新型炸药,火工品,爆破器材和新型武器的设计与制造。本文综述了现代光谱对火焰与爆炸过程瞬态温度的实时诊断技术,如原子发射-吸收光谱法、原子发射双谱线法、原子发射多谱线光谱法、分子转振光谱法、激光相干反斯托克斯拉曼光谱法和平面激光诱导荧光光谱法的应用和新近发展。其中原子发射-吸收光谱法的最大时间分辨率可达25μs,双谱线法的时间分辨率可高达0.1μs,完全适应于猛烈的爆炸和燃烧火焰的瞬态实时温度诊断的需要。其他的方法也将对研究火焰与爆炸过程的规律和燃烧瞬态特征的表征提供了新的有效的研究方法。  相似文献   

10.
1引言预燃室燃烧技术是近十多年来开发研究的一种高燃烧效率低NO。的燃烧技术门.它是一种分级燃烧技术。燃料在预燃室内只是部分地燃烧,在贫氧的一次火焰区内脱挥发分,从而减少了NO。的形成。自1982年以来,我国开发研究了很多种类的预燃室,如旋流、大速差l‘]、偏置射流预燃室等。工程热物理研究所研究开发了逆向复式射流预燃室燃烧器l‘,‘]。经实验室和工业实验证明,该预燃室有极优良的火焰稳定性能和煤种适应性,能够实现较低的NOx排放。本文针对逆向射流预燃室内这一独特的流场结构,利用数值模拟来预报煤粉颗粒在其内的运…  相似文献   

11.
高光谱技术提供了空间和光谱维度的信息,同时基于传统黑体模型的实验技术和计算方法不适用于甲烷火焰的辐射特性,而火焰中自由基的高光谱信息反映了火焰结构、组分浓度分布等燃烧的多方面特征,能够为燃烧模型的完善提供依据。利用高光谱技术在不同当量比和不同流量下研究了甲烷预混火焰中自由基的空间和光谱特性。对不同当量比的研究表明,随着当量比的增加,火焰中心处的CH*和C*2自由基的辐射强度先增加后降低,而燃烧区域内二者的平均辐射强度一直增加,火焰中心处的点可以表征局部的燃烧状态,而燃烧区域内辐射均值表征热释率等整体燃烧状态,定量给出了两种方法的不同趋势。火焰中心处的CH*自由基辐射强度在当量比为1.01时达到峰值,而C*2自由基辐射强度在当量比为1.12时达到峰值,两种自由基的辐射峰值可以分别作为燃烧中反应强度和稳定性的判据。当量比可以由C*2和CH*辐射强度之比来表征,修正了C*2/CH*和当量比的线性关系,提出应使用燃烧区域内C*2和CH*的平均辐射强度之比,并提出了该比值与当量比的二次关系。利用高光谱技术生成了燃烧区域内C*2/CH*的云图,得到了详细的空间信息,当量比大于1时,首次在火焰面附近发现了明显的过渡区,体现了高光谱技术的优势。对当量比保持不变情况下的不同流量的研究表明,随着流量的增加,火焰高度增加,而火焰顶部和火焰中心的自由基的浓度分布基本不发生变化,揭示了实验工况下流动的特征时间远小于化学反应特征时间,化学反应过程未受到明显影响。应用高光谱较好的识别出了火焰中的多种自由基,研究了甲烷层流预混火焰中自由基辐射特性及其随着不同当量比和流量变化的趋势,对燃烧现象和机理的认识具有重要意义。  相似文献   

12.
Meng Li 《中国物理 B》2022,31(3):34702-034702
Characteristics of a premixed, swirl methane/air diffusion flame at atmospheric pressure are measured by filtered Rayleigh scattering (FRS). Three operating conditions are investigated with the equivalence ratios of the methane/air flame covering a range of 0.67—0.83. Under each condition, single-shot and averaged FRS images over a region measured 39.3×65.6 mm2 at seven cross sections of the flame are collected to demonstrate the flame behavior. A gradient calculation algorithm is applied to identify reaction zone locations and structures in the instantaneous FRS measurements. Statistical analysis for the mean FRS measurements is performed by means of joint probability density functions. The experimental results indicate that thermochemical state of the swirl flame is strongly influenced by equivalence ratio, leading to varieties of flame structures and temperature distributions. The gradient of the instantaneous FRS images clearly illustrates the characteristics of the reaction zone. The results also demonstrate that FRS can provide detailed insights into the behavior of turbulent flames.  相似文献   

13.
In this paper we report the investigation of the laser-induced breakdown and ignition behaviour of methane/air and dimethyl ether (DME)/air mixtures. Moreover, the optical emission from the induced plasma is utilized for determining the mixture composition quantitatively by means of laser-induced breakdown spectroscopy (LIBS). To the best of the authors’ knowledge, LIBS and laser ignition of DME have not been reported in literature before. The technique under investigation is finally employed for combustion diagnostics in laminar as well as turbulent flames. In the laminar premixed and non-premixed flames the LIBS spectra allow spatially resolved measurements of the equivalence ratio and enable studying the mixing of gases provided through the burner with the surrounding room air. In addition, the breakdown threshold of the applied laser pulse energy yields an estimate for the local temperature. In the turbulent cases single-shot LIBS spectra are recorded at fixed position allowing the derivation of local statistical fluctuations of the equivalence ratio in partially premixed jet flames. The results show that laser-induced breakdowns have a strong potential for flame diagnostics and, under suitable conditions, for the ignition of combustible mixtures.  相似文献   

14.
The occurrence of oscillating combustion and combustion instability has led to resurgence of interest in the causes, mechanisms, suppression, and control of combustion noise. Noise generated by enclosed flames is of greater practical interest but is more complicated than that by open flames, which itself is not clearly understood. Studies have shown that different modes of combustion, premixed and non-premixed, differ in their sound generation characteristics. However, there is lack of understanding of the region bridging these two combustion modes. This study investigates sound generation by partially premixed flames. Starting from a non-premixed flame, air was gradually added to achieve partial premixing while maintaining the fuel flow rate constant. Methane, ethylene, and ethane partially premixed flames were studied with hydrogen added for flame stabilization. The sound pressure generated by methane partially premixed flames scales with M5 compared to M3 for turbulent non-premixed methane flames. Also, the sound pressure generated by partially premixed flames of ethane and ethylene scales as M4.5. With progressive partial premixing, spectra level increases at all frequencies with a greater increase in the high-frequency region compared to the low-frequency region; flames develop a peak and later a constant level plateau in the low frequency region. The partially premixed flames of methane, ethylene, and ethane generate a similar SPL as a function of equivalence ratio when the fuel volume flow rate is matched. However, when fuel mass flow rate is matched, the ethane and ethylene flames produce a similar SPL, which is lower than that produced by the methane flame.  相似文献   

15.
The mixing, reaction progress, and flame front structures of partially premixed flames have been investigated in a gas turbine model combustor using different laser techniques comprising laser Doppler velocimetry for the characterization of the flow field, Raman scattering for simultaneous multi-species and temperature measurements, and planar laser-induced fluorescence of CH for the visualization of the reaction zones. Swirling CH4/air flames with Re numbers between 7500 and 60,000 have been studied to identify the influence of the turbulent flow field on the thermochemical state of the flames and the structures of the CH layers. Turbulence intensities and length scales, as well as the classification of these flames in regime diagrams of turbulent combustion, are addressed. The results indicate that the flames exhibit more characteristics of a diffusion flame (with connected flame zones) than of a uniformly premixed flame.  相似文献   

16.
The effects of equivalence ratio variations on flame structure and propagation have been studied computationally. Equivalence ratio stratification is a key technology for advanced low emission combustors. Laminar counterflow simulations of lean methane–air combustion have been presented which show the effect of strain variations on flames stabilized in an equivalence ratio gradient, and the response of flames propagating into a mixture with a time-varying equivalence ratio. ‘Back supported’ lean flames, whose products are closer to stoichiometry than their reactants, display increased propagation velocities and reduced thickness compared with flames where the reactants are richer than the products. The radical concentrations in the vicinity of the flame are modified by the effect of an equivalence ratio gradient on the temperature profile and thermal dissociation. Analysis of steady flames stabilized in an equivalence ratio gradient demonstrates that the radical flux through the flame, and the modified radical concentrations in the reaction zone, contribute to the modified propagation speed and thickness of stratified flames. The modified concentrations of radical species in stratified flames mean that, in general, the reaction rate is not accurately parametrized by progress variable and equivalence ratio alone. A definition of stratified flame propagation based upon the displacement speed of a mixture fraction dependent progress variable was seen to be suitable for stratified combustion. The response times of the reaction, diffusion, and cross-dissipation components which contribute to this displacement speed have been used to explain flame response to stratification and unsteady fluid dynamic strain.  相似文献   

17.
We report on the development of planar laser-induced fluorescence (PLIF) for CH imaging with improved detection sensitivity for single-shot investigations of turbulent, lean, premixed flames. A ring-cavity, pulsed Alexandrite laser was frequency-doubled to excite the lines in the R-branch band-head of the B-X (0,0) band and broadband fluorescence from the B-X (0,1), A-X (1,1) and (0,0) bands, overlapping in the spectral range around 431 nm, was collected. The employed Alexandrite laser, which is characterized by its long pulse duration (150 ns), gives a tunable laser beam around 775 nm with a pulse energy for the second harmonic at the CH absorption wavelength of about 70 mJ. Moreover, the laser has the possibility to be operated in narrow bandwidth (100 MHz) or broad bandwidth (8 cm−1). An introductory high resolution excitation scan over the R-branch band-head was performed and, in addition, saturated excitation with the broadband option of the laser was investigated. By simultaneous excitation of several rotational transitions and to bring these transitions close to saturation, high signal-to-noise ratios were reached over a wide range of equivalence ratios. A sharp and thin CH layer was observed in single-shot PLIF images from laminar premixed methane/air flames from Φ = 0.6 to Φ = 1.5. Finally, the impact of the developed CH PLIF technique is demonstrated in a highly turbulent, lean, partially premixed methane/air flame established on a co-axial jet flame burner.  相似文献   

18.
Under micro-scale combustion influenced by quenching distance, high heat loss, shortened diffusion characteristic time, and flow laminarization, we clarified the most important issues for the combustor of ultra-micro gas turbines (UMGT), such as high space heating rate, low pressure loss, and premixed combustion. The stability behavior of single flames stabilized on top of micro tubes was examined using premixtures of air with hydrogen, methane, and propane to understand the basic combustion behavior of micro premixed flames. When micro tube inner diameters were smaller than 0.4 mm, all of the fuels exhibited critical equivalence ratios in fuel-rich regions, below which no flame formed, and above which the two stability limits of blow-off and extinction appeared at a certain equivalence ratio. The extinction limit for very fuel-rich premixtures was due to heat loss to the surrounding air and the tube. The extinction limit for more diluted fuel-rich premixtures was due to leakage of unburned fuel under the flame base. This clarification and the results of micro flame analysis led to a flat-flame burning method. For hydrogen, a prototype of a flat-flame ultra-micro combustor with a volume of 0.067 cm3 was made and tested. The flame stability region satisfied the optimum operation region of the UMGT with a 16 W output. The temperatures in the combustion chamber were sufficiently high, and the combustion efficiency achieved was more than 99.2%. For methane, the effects on flame stability of an upper wall in the combustion chamber were examined. The results can be explained by the heat loss and flame stretch.  相似文献   

19.
氢是一种非常有前景的清洁可再生能源载体.掺氢燃料预混稀燃是当前开发清洁高效的低排放燃气轮机最重要的能源转化方式之一。本文基于预混CH4/H2/air本生灯火焰,对氢气掺混影响下的湍流火焰详细火焰结构进行了测量和表征。实验采用CH2O和OH基平面激光诱导荧光(PLIF,Planar Laser Induced Fluorescence)同步测量技术,获得了火焰预热区、反应区以及已燃区的详细火焰结构信息。本文对反应区和预热区火焰厚度进行了提取和统计。研究表明,氢气对火焰反应区、预热区均有明显作用。结果表明,掺氢小幅度增厚反应区厚度,但能够比较明显地降低预热区厚度。  相似文献   

20.
Ammonia (NH3) direct combustion is attracting attention for energy utilization without CO2 emissions, but fundamental knowledge related to ammonia combustion is still insufficient. This study was designed to examine effects of radiation heat loss on laminar ammonia/air premixed flames because of their very low flame speeds. After numerical simulations for 1-D planar flames with and without radiation heat loss modeled by the optically thin model were conducted, effects of radiation heat loss on flame speeds, flame structure and emissions were investigated. Simulations were also conducted for methane/air mixtures as a reference. Effects of radiation heat loss on flame speeds were strong only near the flammability limits for methane, but were strong over widely diverse equivalence ratios for ammonia. The lower radiative flame temperature suppressed the thermal decomposition of unburned ammonia to hydrogen (H2) at rich conditions. The equivalence ratio for a low emission window of ammonia and nitric oxide (NO) in the radiative condition shifted to a lower value than that in the adiabatic condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号