首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper investigates the estimation of the disorder degree of the classical static noise using three entangled qubits as quantum probes together with the tools of local quantum estimation theory. Three probing schemes namely common environment (CE), independent environments (IEs) and mixed environments (MEs) are investigated and the optimal initial state preparation of the probes taken as a partially depolarized GHZ state. The results show that: (i) the IEs probing scheme allows one to achieve better estimation precision compared to both MEs and CE schemes respectively; (ii) the higher is the initial amount of entanglement of the probes, the larger is the estimation precision, independently of the scheme considered; (iii) both small and large values of the disorder parameter are uniformly estimable at the optimal interaction time; (iv) entangled qubits probes quickly encode information about the disorder parameter than single-qubit probe; (v) there is an improvement in the estimation of the disorder parameter when entangled probes interacting either in IEs or MEs are used instead of a single probe, demonstrating that a single probe is not sufficient to optimally estimate the disorder parameter of the static noise. On the other hand, we have also investigated the relationship between the residual amount of entanglement present in the probes at the optimal interaction time and the estimation precision of the disorder parameter. We show that the higher the residual amount of entanglement at the optimal interaction time, the smaller the estimation precision.  相似文献   

2.
We propose an adaptive, two step strategy, for the estimation of mixed qubit states. We show that the strategy is optimal in a local minimax sense for the trace norm distance as well as other locally quadratic figures of merit. Local minimax optimality means that given n identical qubits, there exists no estimator which can perform better than the proposed estimator on a neighborhood of size n −1/2 of an arbitrary state. In particular, it is asymptotically Bayesian optimal for a large class of prior distributions. We present a physical implementation of the optimal estimation strategy based on continuous time measurements in a field that couples with the qubits. The crucial ingredient of the result is the concept of local asymptotic normality (or LAN) for qubits. This means that, for large n, the statistical model described by n identically prepared qubits is locally equivalent to a model with only a classical Gaussian distribution and a Gaussian state of a quantum harmonic oscillator. The term ‘local’ refers to a shrinking neighborhood around a fixed state ρ 0. An essential result is that the neighborhood radius can be chosen arbitrarily close to n −1/4. This allows us to use a two step procedure by which we first localize the state within a smaller neighborhood of radius n −1/2+ϵ, and then use LAN to perform optimal estimation.  相似文献   

3.
《Optics Communications》2002,201(1-3):71-77
We present a scheme for generating multiple, strongly interacting qubits in rare-earth-ion-doped inorganic crystals at cryogenic temperatures. Two ground state hyperfine levels, with hour long lifetimes and ms decoherence times are chosen as qubit states. Controlled logic between the qubits is accomplished using the change in permanent dipole moment induced by an optical transition between the ground and excited state of these ions. The scheme is based on existing material data and established measurement techniques and should therefore be straightforward to realise in practice. The procedure used for creating the qubits can be generalised also to other solid state systems.  相似文献   

4.
Basing on positive maps separability criterion we propose the experimentally viable, direct detection of quantum entanglement. It is efficient and does not require any a priori knowledge about the state. For two qubits it provides a sharp (i.e., "if and only if") separability test and estimation of amount of entanglement. We view this method as a new form of quantum computation, namely, as a decision problem with quantum data structure.  相似文献   

5.
《Physics letters. A》2014,378(30-31):2048-2053
We study dynamics of genuine entanglement for quantum states of three and four qubits under non-Markovian dephasing. Using a computable entanglement monotone for multipartite systems, we find that the GHZ state is quite resilient state whereas the W state is the most fragile. We compare dynamics of chosen quantum states with dynamics of random pure states and weighted graph states.  相似文献   

6.
We investigate the quantum Fisher information and Heisenberg limit in multi-qubit pure state superposed by a GHZ state and two W states with a relative phase. Analytical expressions of quantum Fisher information and phase estimation sensitivity are derived. It is shown that the maximal quantum Fisher information occurs and the phase estimation is enhanced to the Heisenberg limit when the number of qubits is large.  相似文献   

7.
We show that topological equivalence classes of circles in a two-dimensional square lattice can be used to design dynamical decoupling procedures to protect qubits attached on the edges of the lattice. Based on the circles of the topologically trivial class in the original and the dual lattices, we devise a procedure which removes all kinds of local Hamiltonians from the dynamics of the qubits while keeping information stored in the homological degrees of freedom unchanged. If only the linearly independent interaction and nearest-neighbor two-qubit interactions are concerned, a much simpler procedure which involves the four equivalence classes of circles can be designed. This procedure is compatible with Eulerian and concatenated dynamical decouplings,which make it possible to implement the procedure with bounded-strength controls and for a long time period. As an application,it is shown that our method can be directly generalized to finite square lattices to suppress uncorrectable errors in surface codes.  相似文献   

8.
提出了两套三粒子纠缠态的纯化方案.第一个方案选择部分纠缠GHZ态作为量子通道,利用具有一个控制位和一个靶位的非局域控制非门操作和采用集体么正操作及适当地制备三粒子A,B和C的初始态,可以以最佳几率2|β|2获得最大三粒子纠缠态.第二个方案选择EPR对作为量子通道,通过利用具有一个控制位和两个靶位的非局域控制非门操作和采用集体么正操作及适当地制备三粒子A,B和C的初始态,可以以与第一个方案相同的几率获得最大三粒子纠缠态.两个方案都可以推广到N粒子纠缠态的纯化.  相似文献   

9.
In this Letter, we construct the quantum algorithms for the Simon problem and the period-finding problem, which do not require initializing the auxiliary qubits involved in the process of functional evaluation but are as efficient as the original algorithms. In these quantum algorithms, one can use any arbitrarily mixed state as the auxiliary qubits, and furthermore can recover the state of the auxiliary qubits to the original one after completing the computations. Since the recovered state can be employed in any other computations, we obtain that a single preparation of the auxiliary qubits in an arbitrarily mixed state is sufficient to implement the iterative procedure in the Simon algorithm or the period-finding algorithm.  相似文献   

10.
We revisit the protocols to create maximally entangled states between two Josephson junction (33) charge phase qubits coupled to a microwave field in a cavity as a quantum data bus. We analyze a novel mechanism of quantum decoherence due to the adiabatic entanglement between qubits and the data bus, the off-resonance microwave field. We show that even if the variable of the data bus can be adiabatically eliminated, the entanglement between the qubits and data bus remains and can decohere the superposition of two-particle state. Fortunately we can construct a decoherencefree subspace of two-dimension to against this adiabatic decoherence. To carry out the analytic study for this decoherence problem, we develop Frohlich transformation to re-derive the effective Hamiltonian of these systems, which is equivalent to that obtained from the adiabatic elimination approach.  相似文献   

11.
We analyze decoherence of a quantum register in the absence of nonlocal operations, i.e., n noninteracting qubits coupled to an environment. The problem is solved in terms of a sum rule which implies linear scaling in the number of qubits. Each term involves a single qubit and its entanglement with the remaining ones. Two conditions are essential: first, decoherence must be small, and second, the coupling of different qubits must be uncorrelated in the interaction picture. We apply the result to a random matrix model, and illustrate its reach considering a Greenberger-Horne-Zeilinger state coupled to a spin bath.  相似文献   

12.
We study the interaction between a single-mode quantized field and a quantum system composed of two qubits. We suppose that two qubits initially be prepared in the mixed and separable state, and study how entanglement between two qubits arises in the course of evolution according to the Jaynes-Cummings type interaction with nonclassical radiation field. We also investigate the relation between entanglement and purity of qubit subsystem. We show that different photon statistics have different effects on the dynamical behavior of the qubit subsystem. When the qubits are initially prepared in the maximally mixed and separable state, for coherent state field we cannot find entanglement between two qubits; for squeezed state field entanglement between two qubits exists in several short period of time; for even and odd coherent state fields of large photon number, the dynamical behavior of the entanglement between two qubits shows collapse and revival phenomenon. For odd coherent state field of small photon number, the entanglement with both qubits initially prepared in maximally mixed state can be stronger than that with both qubits initially prepared in pure states. For fields of small photon number, the entanglement strongly depends on the states they are initially prepared in. For coherent state field, and odd and even coherent state fields of large photon number, the entanglement only depends on the purity of the initial state of qubit subsystem. We also show that during the evolution the unentangled state may be purer than the entangled state, and the maximum degree of entanglement may not occur at the time when the qubit subsystem is in the purist state.  相似文献   

13.
We study the interaction between a single-mode quantized field and a quantum system composed of two qubits. We suppose that two qubits initially be prepared in the mixed and separable state, and study how entanglement between two qubits arises in the course of evolution according to the Jaynes-Cummings type interaction with nonclassical radiation field. We also investigate the relation between entanglement and purity of qubit subsystem. We show that different photon statistics have different effects on the dynamical behavior of the qubit subsystem. When the qubits are initially prepared in the maximally mixed and separable state, for coherent state field we cannot find entanglement between two qubits; for squeezed state field entanglement between two qubits exists in several short period of time; for even and odd coherent state fields of large photon number, the dynamical behavior of the entanglement between two qubits shows collapse and revival phenomenon. For odd coherent state field of small photon number, the entanglement with both qubits initially prepared in maximally mixed state can be stronger than that with both qubits initially prepared in pure states. For fields of small photon number, the entanglement strongly depends on the states they are initially prepared in. For coherent state field, and odd and even coherent state fields of large photon number, the entanglement only depends on the purity of the initial state of qubit subsystem. We also show that during the evolution the unentangled state may be purer than the entangled state, and the maximum degree of entanglement may not occur at the time when the qubit subsystem is in the purist state.  相似文献   

14.
We investigate the influence of the initial mixture of qubits and the dissipation on the entanglement transfer from three-qubit Greenberger-Horne-Zeilinger (GHZ) and W state fields to three matter qubits, which are trapped in three spatially separated cavities. We find that at gt≈11.07, the entanglement transfer can be almost complete no matter what state the qubits are initially prepared in. When the dissipation is taken into account, we find that the spontaneous emission plays the similar role to the cavity damping in the entanglement transfer, and the decay rate of the GHZ state is larger than that of the W state.  相似文献   

15.
Suppose, we are given two finite ensembles of pure qubit states, so that the qubits in each ensemble are prepared in identical (but unknown for us) states lying on the equator of the Bloch sphere. What is the best strategy to estimate fidelity between these two finite ensembles of qubit states? We discuss three possible strategies for the fidelity estimation. We show that the best strategy includes two stages: a specific unitary transformation on two ensembles and state estimation of the output states of this transformation.  相似文献   

16.
任杰  朱士群 《理论物理通讯》2010,53(6):1035-1038
The multipartite entanglement transfer from continuous variable system to spin qubits is investigated. We select multi-mode coherent field as continuous variable field. It is found that the qubits can not gain tripartite entanglement for states of close to GHZ state from the multi-mode coherent field. Moreover, the ability of the qubits gain the tripartite entanglement for states close to W state and bipartite entanglement from the continuous variable system is depended on the phase of multi-mode coherent field.  相似文献   

17.
We propose a simple scheme to generate two-mode entangled coherent state in two separated cavities and realize the entanglement reciprocation between the superconducting charge qubits and continuous-variable system. By measuring the state of charge qubits, we find that the entanglement of two charge qubits, which are initially prepared in the maximally entangled state, can be transferred to the two-cavity field, and at this time the two-cavity field is in the entangled coherent state. We also find that the entanglement can be retrieved back to the two charge qubits after measuring the state of the two-cavity field.  相似文献   

18.
We investigate how entanglement can be transferred between qubits and continuous-variable (CV) systems. We find that one ebit borne in maximally entangled qubits can be fully transferred to two CV systems which are initially prepared in a pure separable Gaussian field with high excitation. We show that it is possible to retrieve the entanglement back to qubits from the entangled CV systems. The deposition of multiple ebits from qubits to the initially separable CV systems is also pointed out. We show that the entanglement transfer and retrieval are done at a quasisteady state.  相似文献   

19.
We propose a simple scheme to generate two-mode entangled coherent state in two separated cavities and realize the entanglement reciprocation between the superconducting charge qubits and continuous-variable system. By measuring the state of charge qubits, we find that the entanglement of two charge qubits, which are initially prepared in the maximally entangled state, can be transferred to the two-cavity field, and at this time the two-cavity field is in the entangled coherent state. We also find that the entanglement can be retrieved back to the two charge qubits after measuring the state of the two-cavity field.   相似文献   

20.
A state-dependent proof of Bell's theorem without inequalities using the product state of any two maximally entangled states (Bell states) of two qubits for two observers in an ideal condition, each of which possesses two qubits, is proposed. It is different from the other proofs in which there exists a fundamental requirement that certain specific suitable Bell states have been chosen. Moreover, in any non-ideal situation, a common Bell inequality independent of the choices of the 16-product states is derived, which is used to test the contradiction between quantum mechanics and local reality theory in the reach of current experimental technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号