首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
优化超声变幅杆的形状结构可有效地提高水域声场分布和空化区域,提升对水域超声空化效果。通过模拟分析发现传统超声变幅杆在水域中具有声场分布均匀性差、变幅杆端部声压高等特征,不利于声波在水域中传播。基于此,提出并优化设计了一种具有碟形结构的变幅杆,位于变幅杆的最大振幅处的碟形结构,有更大的振动位移;模拟表明其水域声场和声压均衡度显著优于传统变幅杆,铝箔空化腐蚀实验进一步证实了其水域中的声压分布均匀性。同时,实验通过铝箔的空化腐蚀、KI剂量测定及工件表面油渍去除对比了传统变幅杆和碟形变幅杆,分析表明碟形变幅杆所在水域中有较大的空化腐蚀区域,腐蚀速率明显提升,声化学反应速率提高,油渍去除程度增强,说明了设计的碟形变幅杆能够促进空化泡的产生,增加水域空化区域。  相似文献   

2.
为了探究超声搅拌磁流变抛光液的制备及优化工艺,利用多物理场数值计算方法,建立了超声搅拌磁流变抛光液的声场仿真模型,并进行了频域分析。研究了不同液位深度、超声变幅杆探入深度,不同功率下磁流变抛光液的声场分布。通过测量磁流变抛光液的声场强度对声场仿真进行了验证。结果表明:随着距变幅杆距离的增加,声强逐渐减弱,高声强区域主要分布在换能器轴线附近。声强在距变幅杆20mm范围内急剧衰减,变幅杆最佳探入深度为10mm,增大功率有助于空化区域的扩大。声场仿真结果与实验测量结果基本一致,对磁流变抛光液的制备提供了数值计算基础。  相似文献   

3.
为了研究初生空化流动形态及其紊流流场结构,采用高速录像技术观察了绕Clark-Y型水翼初生空化的空化形态,应用LDV分别测量了无空化和初生空化条件下的紊流流场分布.结果表明,绕水翼小攻角无分离流动区域的初生空化形态呈游离发夹涡型空泡团结构,但其具有和单泡相同的发展过程;初生空化和无空化紊流流场的速度和紊流强度没有发现有规律性的差异,初生游离型空穴的形成与发展过程,对雷诺平均流场没有显著的影响.  相似文献   

4.
吴文华  翟薇  胡海豹  魏炳波 《物理学报》2017,66(19):194303-194303
针对合金熔体等液体材料的超声处理过程,选取水作为透明模型材料,采用数值模拟计算和示踪粒子实验方法,研究了20和490 kHz两种频率超声作用下水中的声场和流场分布.结果表明,增大变幅杆半径能够提高水中声压水平,扩大空化效应的发生区域.当超声频率为20 kHz时,水中声压最大值出现在超声变幅杆下端面处,且声压沿传播距离的增大而显著减小.如果超声频率增加至490 kHz,水中的声压级相比于20 kHz时明显提高,且声压沿着超声传播方向呈现出周期性振荡特征.两种频率超声作用下水中的流场呈现相似的分布特征,且平均流速均随着变幅杆半径增大表现出先升高后降低的趋势.变幅杆半径相同时,20 kHz频率超声作用下水中的平均流速高于490 kHz频率超声.采用示踪粒子图像测速技术实时观察和测定了水中的流速分布,发现其与计算结果基本一致.  相似文献   

5.
液体薄层中的超声空化*   总被引:1,自引:0,他引:1       下载免费PDF全文
液体薄层中的超声空化,因其边界及所处空间的特殊性,而呈现出非常独特的空化结构和演化行为,在超声清洗、超声钎焊、表面处理、近场声悬浮、超声化学等领域都有所应用。该文梳理了近几年该课题组在液体薄层中的超声空化研究中的一些成果,力图揭示液体薄层内空泡、空化云、空化场的运动和分布规律,及其产生、发展和演化过程,以期对液体薄层中的超声空化行为有一个相对清晰和完整的认识。  相似文献   

6.
本文采用高速全流场显示技术观测了两种涂层对绕Clark-Y型水翼空化流动的影响。研究中,随着空化数的降低,主要观测了绕水翼的初生空化、片状空化、云状空化三个阶段σ=1.50时,绕水翼A的空化流动已经发展至片状空化,绕水翼B的空化流动处于初生空化阶段。σ=1.19时,绕水翼A与水翼B空化流动均处于片状空化阶段,围绕两种模型的空穴长度接近,空泡破裂时形成了大量马蹄涡,水翼A表面的附着型锥状空穴产生了大尺度的涡团。σ=0.7时,绕水翼A和水翼B皆为云状空化阶段,绕水翼A的无量纲空化面积小于水翼B;反向射流导致大尺度涡团周期性脱落,绕水翼A的空化涡团脱落较为整齐,绕水翼B则产生分散的马蹄涡。  相似文献   

7.
龚博致  张秉坚 《物理学报》2009,58(3):1504-1509
应用非平衡分子动力学方法,对水中超空泡流形成机理及减阻效应进行了模拟研究.计算得到了流体密度分布、局部空化数分布、阻力系数及含气百分比等流场细节数据,结果显示空化数判据在分子层面仍然成立,局部低空化数区域与超空泡形成区域在空间上分离;超空泡形成和稳定主要受物体运动速度影响;空化器构型对空泡内含气率有较大影响;从云雾空化状态过渡到超空泡,物体表面摩擦力可以减小50%—90%.与数值模拟结果的对比表明非平衡分子动力学模拟适用于研究微观超空泡机理,能够经济有效地探讨超高速流体运动的一些自然规律. 关键词: 非平衡分子动力学 超空泡 高速流体 摩擦系数  相似文献   

8.
绕水翼片状空化流动结构的数值与实验研究   总被引:3,自引:0,他引:3  
采用数值与实验相结合的方法研究了水翼片状空化流动结构.实验采用高速录像技术观察了片状卒泡形态,应用LDV测量了翼型周围的湍动能和速度分布;采用N-S方程和基于空泡动力学方程的空化模型计算了绕水翼片状空化流场.结果表明:在片状空化阶段,翼型吸力面上附着很薄的一层透明空泡,空泡彤态呈现于指状;随着空化数的减少,空泡尾部水汽交界面相互作用增强,并且空泡尾部出现大的旋涡,影响了空泡尾部区域压力和速度分布,片状空泡尾部的水汽混合区出现不稳定现象,同时存在小的空泡团脱落.数值模拟得到的水翼片状空化流动现象和实验观察到的结果基本一致,验证了计算模型和数值方法的可靠性.  相似文献   

9.
采用高速全流场显示技术分别观测了绕超空化水翼和Clark-Y型水翼的云状空化.结果表明:绕超空化水翼和Clark-Y型水翼的云状空化具有相同的变化过程,即:生成、成长、膨胀、脱落和消失溃灭五种状态,两种空化云流动都具有明显的脱落周期和脱落轨迹.在翼型尾部存在的反方向射流,致使空化旋涡脱落;尽管模型尺度、来流速度和空化数基本相同,但由于超空化水翼与Clark-Y型水翼断面形状不同,使翼型尾部的反方向射流强度不同,故与来流相互作用强度不同,导致绕两种水翼的空化云脱落周期不同.在本文实验条件下,绕超空化水翼空化云和Clark-Y型水翼空化云的脱落频率分别为13.5 Hz和19 Hz.  相似文献   

10.
超声速后台阶流动/射流相互作用的数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
采用高精度格式求解二维Navier-Stokes方程研究超声速射流与同向超声速后台阶流动相互作用的流场基本结构及规律,分别应用5阶WENO格式、6阶中心差分格式离散对流项和黏性项,时间推进采用3阶Runge-Kutta格式,并应用消息传递接口(message passing interface,MPI)非阻塞式通信实现并行化.分别研究了超声速后台阶流动、超声速射流的基本结构特征,以此讨论和分析超声速后台阶流动/射流相互作用的特征,以及不同来流条件对波系结构、涡结构、剪切层、膨胀扇等的影响,尤其是来流剪切层和射流剪切层的相互作用,形成复杂的波系结构及相互干扰的流动现象.   相似文献   

11.
The cavitation field generated by an ultrasonic horn at low frequency and high power is known to self-organize into a conical bubble structure. The physical mechanism at the origin of this bubble structure is investigated using numerical simulations and acoustic pressure measurements. The thin bubbly layer lying at horn surface is shown to act as a nonlinear thickness resonator that amplifies acoustic pressure and distorts acoustic waveform. This mechanism explains the self-stabilization of the conical bubble structure as well as the generation of shock wave and the focusing at very short distance.  相似文献   

12.
The objective of this paper is to investigate the transient conical bubble structure (CBS) and acoustic flow structure in ultrasonic field. In the experiment, the high-speed video and particle image velocimetry (PIV) techniques are used to measure the acoustic cavitation patterns, as well as the flow velocity and vorticity fields. Results are presented for a high power ultrasound with a frequency of 18 kHz, and the range of the input power is from 50 W to 250 W. The results of the experiment show the input power significantly affects the structures of CBS, with the increase of input power, the cavity region of CBS and the velocity of bubbles increase evidently. For the transient motion of bubbles on radiating surface, two different types could be classified, namely the formation, aggregation and coalescence of cavitation bubbles, and the aggregation, shrink, expansion and collapse of bubble cluster. Furthermore, the thickness of turbulent boundary layer near the sonotrode region is found to be much thicker, and the turbulent intensities are much higher for relatively higher input power. The vorticity distribution is prominently affected by the spatial position and input power.  相似文献   

13.
《Ultrasonics sonochemistry》2014,21(5):1696-1706
The generation and control of acoustic cavitation structure are a prerequisite for application of cavitation in the field of ultrasonic sonochemistry and ultrasonic cleaning. The generation and control of several typical acoustic cavitation structures (conical bubble structure, smoker, acoustic Lichtenberg figure, tailing bubble structure, jet-induced bubble structures) in a 20–50 kHz ultrasonic field are investigated. Cavitation bubbles tend to move along the direction of pressure drop in the region in front of radiating surface, which are the premise and the foundation of some strong acoustic cavitation structure formation. The nuclei source of above-mentioned acoustic cavitation structures is analyzed. The relationship and mutual transformation of these acoustic cavitation structures are discussed.  相似文献   

14.
High power ultrasound reactors have gained a lot of interest in the food industry given the effects that can arise from ultrasonic-induced cavitation in liquid foods. However, most of the new food processing developments have been based on empirical approaches. Thus, there is a need for mathematical models which help to understand, optimize, and scale up ultrasonic reactors. In this work, a computational fluid dynamics (CFD) model was developed to predict the acoustic streaming and induced heat generated by an ultrasonic horn reactor. In the model it is assumed that the horn tip is a fluid inlet, where a turbulent jet flow is injected into the vessel. The hydrodynamic momentum rate of the incoming jet is assumed to be equal to the total acoustic momentum rate emitted by the acoustic power source. CFD velocity predictions show excellent agreement with the experimental data for power densities higher than W(0)/V ≥ 25kWm(-3). This model successfully describes hydrodynamic fields (streaming) generated by low-frequency-high-power ultrasound.  相似文献   

15.
In this work, mixtures of increasing viscosity (from 0.9 to ≈720 mPas) are sonicated directly using an ultrasonic horn at 30 kHz to investigate the effect of viscosity on the ultrasound field both from an experimental and numerical point of view. The viscosity of the mixtures is modified by preparing water-polyethylene glycol solutions. The impact of the higher viscosity on the acoustic pressure distribution is studied qualitatively and semi-quantitatively using sonochemiluminescence. The velocity of light scattering particles added in the mixtures is also explored to quantify acoustic streaming effects using Particle Image Velocimetry (PIV). A numerical model is developed that is able to predict cavitationally active zones accounting for both thermoviscous and cavitation based attenuation. The results show that two cavitation zones exist: one directly under the horn tip and one around the part of the horn body that is immersed in the liquid. The erosion patterns on aluminum foil confirm the existence of both zones. The intensity of the cavitationally active zones decreases considerably with increasing viscosity of the solutions. A similar reduction trend is observed for the velocity of the particles contained in the jet directly under the tip of the horn. Less erratic flow patterns relate to the high viscosity mixtures tested. Finally, two numerical models were made combining different boundary conditions related to the ultrasonic horn. Only the model that includes the radial horn movements is able to qualitatively predict well the location of the cavitation zones and the decrease of the zones intensity, for the highest viscosities studied. The current findings should be taken into consideration in the design and modelling phase of horn based sonochemical reactors.  相似文献   

16.
The flow in a confined container induced by an ultrasonic horn is measured by Particle Image Velocimetry (PIV). This flow is caused by acoustic streaming and highly influenced by the presence of cavitation. The jet-like experimentally observed flow is compared with the available theoretical solution for a turbulent free round jet. The similarity between both flows enables a simplified numerical model to be made, whilst the phenomenon is very difficult to simulate otherwise. The numerical model requires only two parameters, i.e. the flow momentum and turbulent kinetic energy at the position of the horn tip. The simulated flow is used as a basis for the calculation of the time required for the entire liquid volume to pass through the active cavitation region.  相似文献   

17.
The oscillation and migration of bubbles within an intensive ultrasonic field are important issues concerning acoustic cavitation in liquids.We establish a selection map of bubble oscillation mode related to initial bubble radius and driving sound pressure under 20 kHz ultrasound and analyze the individual-bubble migration induced by the combined effects of pressure gradient and acoustic streaming.Our results indicate that the pressure threshold of stable and transient cavitation decreases with the increasing initial bubble radius.At the pressure antinode,the Bjerknes force dominates the bubble migration, resulting in the large bubbles gathering toward antinode center,whereas small bubbles escape from antinode.By contrast,at the pressure node,the bubble migration is primarily controlled by acoustic streaming,which effectively weakens the bubble adhesion on the container walls,thereby enhancing the cavitation effect in the whole liquid.  相似文献   

18.
An acoustic radiation force counterbalanced appliance was employed to map the cavitation distribution in water. The appliance was made up of a focused ultrasound transducer and an aluminum alloy reflector with the exactly same shape. They were centrosymmetry around the focus of the source transducer. Spatial–temporal dynamics of cavitation bubble clouds in the 1.2 MHz ultrasonic field within this appliance were observed in water. And they were mapped by sonochemiluminescence (SCL) recordings and high-speed photography. There were significant differences in spatial distribution and temporal evolution between normal group and counterbalanced group. The reflector could avoid bubble directional displacement induced by acoustic radiation force under certain electric power (⩽50 W). As a result, the SCL intensity in the pre-focal region was larger than that of normal group. In event of high electric power (⩾70 W), most of the bubbles were moving in acoustic streaming. When electric power decreased, bubbles kept stable and showed stripe structure in SCL images. Both stationary bubbles and moving bubbles have been captured, and exhibited analytical potential with respect to bubbles in therapeutic ultrasound.  相似文献   

19.
Bubble behaviors near a boundary in an ultrasonic field are the fundamental forms of acoustic cavitation and of substantial importance in various applications, such as industry cleaning, chemical engineering and food processing. The effects of two important factors that strongly affect the dynamics of a single acoustic cavitation bubble, namely, the initial bubble radius and the standoff distance, were investigated in this work. The temporal evolution of the bubble was recorded using high speed microphotography. Meanwhile, the time of bubble collapse and the characteristics of the liquid jets were analyzed. The results demonstrate that the intensity of the acoustic cavitation, which is characterized by the time of bubble collapse and the liquid jet speed, reaches the optimum level under suitable values of the initial bubble radius and the normalized standoff distance. As the initial bubble radius and the normalized standoff distance increase or decrease from the optimal values, the time of the bubble collapse increases, and the first liquid jet’s speed decreases substantially, whereas the speeds of the second and third liquid jets exhibit no substantial changes. These results on bubble dynamics in an ultrasonic field are important for identifying or correcting the mechanisms of acoustic cavitation and for facilitating its optimization and application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号