首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
LD-pumped actively Q-switched intracavity frequency-doubled Nd:GdVO4/KTP red laser has been introduced. A maximum red average output power of 0.78 W at 671 nm was obtained at pulse-repetition frequency (PRF) of 15 kHz and the optical conversion efficiency was 6.5%. At the incident pump power of 12 W, the shortest laser pulse occurred at PRF of 15 kHz. Its full-width at half-maximum and the highest peak power were measured to be 35.8 ns and 3.38 kW. The largest single pulse energy of 56.3 μJ was achieved at PRF of 10 kHz. The influence factors on the Q-switched Nd:GdVO4/KTP red laser have been discussed.  相似文献   

2.
A diode-laser-array end-pumped acousto-optically Q-switched intracavity frequency-doubled Nd:GdVO4/KTP green laser, formed with a three-mirror folded resonator, has been demonstrated. With 15 W of pump power incident upon the Nd:GdVO4 crystal, a maximum average green output power of 3.75 W was obtained at 50 kHz of pulse repetition frequency, giving an optical conversion efficiency of 25%, whereas the effective intracavity frequency-doubling efficiency was determined to be 72%. At the incident pump power of 12.8 W, the shortest laser pulse was achieved at a pulse repetition rate of 10 kHz, the resulting pulse width, single pulse energy, and peak power were measured to be 35 ns, 108 μJ, and 3.1 kW, respectively. Received: 18 May 2000 / Published online: 20 September 2000  相似文献   

3.
Liu  J.  Ozygus  B.  Erhard  J.  Ding  A.  Weber  H.  Meng  X. 《Optical and Quantum Electronics》2003,35(8):811-824
A diode-pumped 1.34 m Nd:GdVO4 laser operating in cw and active Q-switching modes has been demonstrated. 4.15 W of cw output power was obtained at the highest attainable pump power of 12.3 W, resulting in an optical conversion efficiency of 33.7%, the slope efficiency was determined to be 37.6%. In Q-switching operation, a maximum average output power of 2.7 W was generated at pulse repetition frequency (PRF) of 50 kHz, with an optical conversion efficiency of 22% and a slope efficiency of 29.2%. The laser pulses with shortest duration, highest energy and peak power were achieved at PRF of 10 kHz, the parameters being 15 ns, 160 J, and 10.7 kW, respectively. By intracavity frequency-doubling with a type II phased-matched KTP crystal, 0.62 W average power at 0.67 m was produced at a PRF of 15 kHz, the resulting pulse energy, peak power, and pulse width being 41.3 J, 2.2 kW, and 19 ns, respectively. A group of analytical formulae, based on rate equations, are presented to evaluate the operational parameters of an actively Q-switched laser. Calculated results were found to be in close consistency with the experimental data.  相似文献   

4.
A simple and compact diode-pumped acousto-optically Q-switched intracavity frequency-doubled Nd:LuVO4/KTP green laser were demonstrated successfully for the first time. At an incident pump power of 6.5 W, an average output power of 663 mW, a pulse width of 26 ns were obtained with a PRF of 10 kHz. The pulse energy and peak power of the green light were determined to be 66.3 μJ and 2.55 kW, respectively.  相似文献   

5.
This work presents experimental results concerning an actively Q-switched intracavity frequency-doubled Nd:LuVO4/LBO green laser with an acousto-optic modulator operated at the wavelength of 0.53 μm. The green average output power of 2.8 W was obtained at a pump power of 16.3 W and a pulse repetition rate of 20 kHz, resulting in an optical conversion efficiency of 17%. When the pulse repetition rate is operated at 5 kHz, the shortest pulse width and the highest peak power at 0.53 μm were measured to be 26.5 ns and 8.43 kW, respectively.  相似文献   

6.
A compact diode-pumped passively Q-switched intracavity frequency-doubled Nd:GdVO4/KTP green-pulse laser was demonstrated, using Cr4+:YAG as a saturable absorber in a simple flat–flat cavity. With a 5.9 W incident pump power, a passively Q-switched green laser was obtained with an average power of 397 mW, repetition rate of 40 kHz, and pulse width of 40 ns, when the initial transmission of Cr4+:YAG was 85%. The shortest pulse width of 30 ns, the highest green peak power of 696 W and the maximum pulse energy of 21 μJ were obtained when the initial transmission of Cr4+:YAG was 70%. Under CW green operation, we obtained 440 mW output power.  相似文献   

7.
Efficient continuous-wave (cw), passively Q-switched, and actively Q-switched laser operations are demonstrated with a mixed vanadate crystal of Nd:Gd0.18Y0.82VO4 under diode pumping. In a cw operation, an output power of 8.25 W is obtained at a maximum available incident pump power (Pin) of 15 W, with a slope efficiency of 56%. Using a Cr4+:YAG crystal of initial transmission of 62% as the saturable absorber for Q-switching, an average output power of 3.05 W is generated at pulse repetition frequency (PRF) of 16.7 kHz when the laser is pumped with the same maximum Pin. The pulse energy, pulse duration, and peak power are 183.3 μJ, 6.0 ns, and 30.6 kW, respectively. When actively Q-switched by an acousto-optic modulator, the laser produces an average output power of 5.5 W at PRF of 30 kHz with 16.2 W of pump power incident upon the laser crystal. The pulse energy, duration, and peak power are measured to be 183 μJ, 10.5 ns, and 17.5 kW, respectively.  相似文献   

8.
We have investigated the acousto-optically Q-switched intracavity second-harmonic generation of 1.06 μm in a 1.9-mm-long BiB3O6 crystal, cut for type-I phase-matching direction of (θ,)=(168.9°,90°), performed in a diode-end-pumped Nd:YVO4 laser. When the incident pump power was 4.3 W at 30 kHz of pulse repetition frequency, a maximum average green output power of 480 mW, the shortest pulse with FWHM width of 72 ns, the highest single pulse energy of 16 μJ and the maximum peak power of 222 W were obtained, giving the corresponding optical conversion efficiency of 11.2%. The effect of varying temperature in BIBO crystal on the average green output power was also investigated.  相似文献   

9.
A non-critically phase-matched KTiOPO4 optical parametric oscillator (OPO) intracavity pumped by a laser diode end-pumped acousto-optically Q-switchedNd:YAG laser is experimentally demonstrated. The highest average power is obtained at the pulse repetition rate (PRR) of around 15 kHz, which is different from the widely reported Nd:YVO4 laser pumped OPO in which the highest average power is obtained at a very high PRR, e.g. 80 kHz. With an incident laser diode power of 6.93 W and a pulse repetition rate of 15 kHz, an average signal power of 0.72 W is obtained with a peak power of 7.7 kW and an optical-to-optical conversion efficiency of 10.4%. PACS 42.65.Yj; 42.60.Gd; 42.55.Xi  相似文献   

10.
A diode-laser array end-pumped acousto-optically Q-switched NYAB laser operating at both 1.06 and 0.53 μm has been demonstrated. An average output power of 1.3 W at 1.06 μm at a pulse repetition frequency (PRF) of 60 kHz was obtained with an optical conversion efficiency of 18.1% and a slope efficiency of 21.3%. At the incident pump power of 6.1 W, the 1.06 μm shortest laser pulse was reached at PRF of 20 kHz with FWHM width measured to be 32 ns, yielding a largest pulse energy of 30 μJ, and a highest peak power of 938 W. The attainable maximum average green power was found to be 185 mW, with an optical conversion efficiency of 3%.  相似文献   

11.
A LD end-pumped acoustic-optic Q-switched intracavity frequency-doubled Nd:YVO4 laser was demonstrated. It uses a high gray-tracking resistance KTP crystal as nonlinear optical crystal. The output characteristics of 532 nm green laser using different doping concentrations and cavity configurations were investigated. With the pump power of 27.5 W, a maximum average power of 13 W at 532 nm was achieved at a pulse repetition rate of 80 kHz, corresponding to the optical-to-optical efficiency of 47.3%. The pulse width is 30 ns and single pulse energy is up to 162.5 μJ. This work is a significant exploration for using a high gray-tracking resistance KTP crystal to generate highly efficient frequency-doubled green laser.  相似文献   

12.
报道了一种利用激光二极管(LD)端面泵浦Nd:YVO4晶体,声光调Q,LBO临界相位匹配腔内倍频的高效率、小体积、风冷绿光激光器。分析了不同偏振光泵浦的情况下,激光晶体对泵浦光的吸收特性。由分析得出,采用部分偏振光泵浦,可以提高激光晶体对泵浦光吸收均匀性,改善基波畸变,获得高转换效率激光输出。实验中,在泵浦光功率为33 W、声光调Q重复频率为20 kHz时,得到脉宽为23.96 ns、平均功率为15 W的1064 nm基频光输出。经倍频后,得到平均功率为11.2 W的绿光输出,倍频效率为74.6%,总体光-光转换效率为34%。在输出功率为10 W时,测得1 h内输出功率不稳定度为0.512 2%,水平方向和竖直方向的光束质量因子M2分别为1.2和1.1。  相似文献   

13.
A diode-pumped passively Q-switched mode-locked (QML) intracavity frequency-doubled Nd:GdVO4/KTP green laser with a semiconductor saturable absorber is presented. Nearly 100% modulation depth for the mode-locked green pulses can be achieved at any pump power over 1.92 W. The width of the mode-locked green pulse was estimated to be about 150 ps. The mode-locked pulse interval within the Q-switched envelope of 320 ns and the repetition rate of 97.5 kHz were obtained, at an incident pump power of 4.4 W. The repetition rate of the mode-locked green pulses inside the Q-switched envelope was 140 MHz.  相似文献   

14.
LD-pumped actively Q-switched Nd:YVO4 self-Raman laser is presented. The maximum average output power of the self-Raman laser at 1173.6 nm was obtained to be 2.21 W at the incident pump power of 18 W and the pulse repetition frequency (PRF) of 30 kHz, with the corresponding optical conversion efficiency of 12.28%.  相似文献   

15.
Q-switched operation of a room temperature Ho:YAP laser was resonantly end-pumped by a diode-pumped Tm:YLF laser at 1.91 μm. The CW Ho:YAP laser generated 9.9 W of linearly output at 2119.03 nm with beam quality factor of M 2 ∼1.46 with respect to absorbed pump power of 19.16 W, corresponding to an optical-to-optical conversion efficiency of 51.7% and slope efficiency of 60.6%. Under Q-switched operation, the maximum output power of 9.8 W in relation to 10 kHz pulse repetition frequency (PRF) was obtained, however, the maximum peak power of 60 kW at the PRF of 5 kHz was demonstrated. At 5 kHz pulse energies of 1.92 mJ with pulse width of 32 ns was achieved.  相似文献   

16.
We analyzed a linear cavity for intracavity frequency doubling of a diode-pumped acousto-optic Q-switched Nd:YAG rod laser, and showed that a green laser beam with a short pulse width can be generated efficiently. A green laser output power of 73 W corresponding to the 83.9% of maximum IR output power was obtained with a 40 ns pulse width at a 10 kHz repetition rate. A green output power of 40 W with a 35 ns pulse width was measured at a 5 kHz repetition rate. Minimum laser pulse width of approximately 32 ns was obtained around 1 kHz repetition rate for both green and IR laser beams.  相似文献   

17.
A pulse laser-diode-array (LDA)-pumped, single-axial-mode, intracavity frequency-doubled Nd:YVO4 laser has been demonstrated by using an birefringent filter consisting of a KTP crystal and two Brewster plates (BP). Up to 72.4 mW average output power is obtained for 800 mW pumping power with an optical-to-optical conversion efficiency of 9.1%. The maximum peak power of the single-frequency green laser is 22.3 W with the pulse width 162 μs.  相似文献   

18.
通过优化双棒串接直腔结构设计,利用大功率LD侧面抽运、声光Q开关、Ⅱ类相位匹配S-KTP内腔倍频获得高效大功率绿色激光输出.当抽运电流为45 A、重复频率为15 kHz时,激光平均功率为132 W,光—光转换效率为132%,脉宽约为120 ns.在输出130 W时,测得1 h功率不稳定度小于05%,光束质量因子M2为67.对高功率抽运情况下激光介质的热透镜效应以及谐振腔稳定运转工作区域也进行了理论分析和实验研究. 关键词: 绿光激光器 腔内倍频 声光调Q LD侧面抽运  相似文献   

19.
The continuous-wave (CW) and acoustooptically (AO) Q-switched operation of a Tm (4 at %), Ho (0.4 at %):GdVO4 laser at a 2.05-μm wavelength were reported in this paper. The Tm,Ho:GdVO4 crystal was cooled by liquid nitrogen and end pumped by a 29.8-W fiber-coupled laser diode at 801 nm. A conversion efficiency of 41% and a slope efficiency of 46% were acquired with a continuous-wave output power of 12.2 W. An average power of 11.6 W was obtained at a pulse repetition frequency (PRF) of 10 kHz, corresponding to an optical-to-optical conversion efficiency of 38.9% and a slope efficiency of 41.4%. The energy per pulse of 1.8 mJ in 14 ns was achieved at 5 kHz with a peak power of 130 kW.  相似文献   

20.
a high repetition rate and high power 532 nm green laser generated by intracavity frequency doubling of a 808 nm laser diode side-pumped ceramic Nd:YAG laser based on BBO electro-optical Q-switch has been demonstrated. in the simple V-folded cavity, the maximum green laser average power 32.6 W was obtained with a pulse width of 58.5 ns at a repetition rate of 10 kHz by using a LBO crystal for frequency doubling, corresponding to a conversion efficiency of 10.9% from diode pumping power to green laser power. An instability of 1.9% was measured over a period of 30 minutes and the beam quality factors were measured to be M x 2 = 3.55, M y 2 = 3.89 at the maximum output power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号