首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can estimate parameters relating to blood flow and tissue volume fractions and therefore may be used to characterize the response of breast tumors to treatment. To assess treatment response, values of these DCE-MRI parameters are observed at different time points during the course of treatment. We propose a method whereby DCE-MRI data sets obtained in separate imaging sessions can be co-registered to a common image space, thereby retaining spatial information so that serial DCE-MRI parameter maps can be compared on a voxel-by-voxel basis. In performing inter-session breast registration, one must account for patient repositioning and breast deformation, as well as changes in tumor shape and volume relative to other imaging sessions. One challenge is to optimally register the normal tissues while simultaneously preventing tumor distortion. We accomplish this by extending the adaptive bases algorithm through adding a tumor-volume preserving constraint in the cost function. We also propose a novel method to generate the simulated breast magnetic resonance (MR) images, which can be used to evaluate the proposed registration algorithm quantitatively. The proposed nonrigid registration algorithm is applied to both simulated and real longitudinal 3D high resolution MR images and the obtained transformations are then applied to lower resolution physiological parameter maps obtained via DCE-MRI. The registration results demonstrate the proposed algorithm can successfully register breast MR images acquired at different time points and allow for analysis of the registered parameter maps.  相似文献   

2.
Xiaoqi Lu  Hongli Ma  Boahua Zhang 《Optik》2012,123(20):1867-1873
Non-rigid medical image registration is an important research project of medical image processing; it is the basis of medical image fusion. Relative to rigid image, the deformation of non-rigid image is more serious and more complicated. According to the characteristics of non-rigid medical image deformation, this paper proposes an adaptive non-rigid medical image registration algorithm. Firstly, it is based on global registration; secondly, it is about extracting feature points of global registration image and the reference image, and then generating irregular triangle grid according to extracted feature points. Finally, local accurate image registration is achieved using the minimum potential energy as a similar measure. Experimental results show that relative to the traditional non-rigid registration algorithm, this algorithm not only ensures the registration accuracy but also enhances the robustness and anti-noise of registration algorithm.  相似文献   

3.
Yinghui Kong  Shaoming Zhang  Peiyao Cheng 《Optik》2013,124(24):6926-6931
Super-resolution (SR) reconstruction is an effective method to solve the problem, that the face image resolution is too low to be recognized in video, but the non-rigid change of deformed face and expression changes greatly affect the accuracy of registration and reconstruction. To solve these problems, a method of multi-level model free form deformation (FFD) elastic registration algorithm based on B spline is proposed. It first use low-resolution FFD grid for global registration, to emphasize the contribution of edge information for registration, we introduce edge registration measure into the sum of squared difference (SSD) criterion. Then divide the global registration image and reference image into a series of corresponding sub-image pairs and calculate the correlation coefficient of each pair; at the same time, we do local registration with high-resolution FFD grid to the small value correlation coefficient sub-image pairs. In the registration process of optimization, the paper uses adaptive step length gradient descent method algorithm based on chaotic variables to improve optimization efficiency. After registration, the algorithm of project onto convex sets (POCS) is used to reconstruct SR face image through several low resolution image sequences, and then recognized these SR face images by support vector machines (SVM) classifier. Experimental results from standard video database and self-built video database show that this method can register and reconstruct face image accurately in the condition of great face deformation and expression change, while the face recognition accuracy is also improved.  相似文献   

4.
According to non-rigid medical image registration, new method of classification registration is proposed. First, Feature points are extracted based on SIFT (Scale Invariant Feature Transform) from reference images and floating images to match feature points. And the coarse registration is performed using the least square method. Then the precise registration is achieved using the optical flow model algorithm. SIFT algorithm is based on local image features that are with good scale, rotation and illumination invariance. Optical flow algorithm does not extract features and use the image gray information directly, and its registration speed is faster. The both algorithms are complementary. SIFT algorithm is used for improving the convergence speed of optical flow algorithm, and optical flow algorithm makes the registration result more accurate. The experimental results prove that the algorithm can improve the accuracy of the non-rigid medical image registration and enhance the convergence speed. Therefore, the algorithm has some advantages in the image registration.  相似文献   

5.
为提高光电成像系统的空间分辨力,提出了一种基于改进的频率域图像配准技术的超分辨力图像处理方法。首先利用改进的频域图像配准方法估算出低分辨力图像之间的微位移量,然后采用Papoulis-Gerchberg超分辨力处理方法完成图像复原。利用不同重构方法进行了仿真及实验研究,给出了评价参数。模拟和实际显微热图像的处理结果表明:该算法可使图像质量得到改善,分辨的细节更多,可有效地提高光电成像系统的空间分辨力;处理算法简单,计算量小,可实现快速处理。该算法还可应用于其他不可控光学微扫描成像系统中,具有广泛的应用前景。  相似文献   

6.
基于小波变换的脑部医学Demons图像配准   总被引:1,自引:0,他引:1  
唐祚  闫德勤  刘彩凤 《应用声学》2015,23(7):2515-2517
非刚性配准是医学图像处理的一个重要研究方向。针对Demons衍生出的一系列经典的配准算法在医学图像应用上计算复杂、方向信息不足问题进行了研究。基于光流场模型的Demons算法依赖图像灰度梯度是图像发生变形,当缺乏梯度信息时,力不能确定,因而容易造成误差,并且该算法仅适合于单模态图像配准。为此本文提出了一种基于小波变换理论的频域Demons配准处理方法(B-Demons)。该方法利用小波变换能够对各个尺度、方向和位置实现较好定位的优势,通过高频、低频的图像变换反映出图像的特征信息。实验结果证明了算法的有效性和鲁棒性。  相似文献   

7.
Digital image correlation (DIC) is a whole-field and non-contact strain measuring method. It could provide deformation information of a specimen by processing two digital images that are captured before and after the deformation. To search the deformed images, a hybrid genetic algorithm, in which a simulated annealing mutation process and adaptive mechanisms are added to the real-parameter genetic algorithm, is proposed in this work. To increase the accuracy and reliability of this method, some key parameters of this method are suggested. Then, this method is used to measure the strain during the micro tensile testing of SU-8 photoresist. In addition to the conventional single region, a double region is proposed to calculate the strain by DIC. The results indicate that while the strains obtained by single region are reasonable, those obtained by double region are accurate. Also the mechanical properties of SU-8 could be accurately obtained.  相似文献   

8.
图像匹配技术广泛应用于各种图像处理任务,如图像拼接、机器视觉等。通常匹配算法的精确度只能达到像素级别,但在很多图像处理任务如超分辨率重建中需要亚像素精度的图像配准。提出了一种基于相位相关的亚像素图像配准算法。根据两幅离散数字图像的相位相关矩阵中的最大值以及其附近若干点可以拟合估计出实际的峰值位置,进而实现两幅图像的亚像素运动估计。提出的算法针对热像仪采集的红外图像进行匹配实验,实验结果表明该算法精度相比通常的亚像素匹配算法较高,且具有更好的实用性。  相似文献   

9.
Image registration is the process of establishing spatial correspondence between two images or between two image volumes. Registration can be achieved by rigid, elastic, or a combination of rigid and elastic transforms that attempt to bring the two images into coincidence. A rigid transform accounts for differences in positioning and an elastic transform describes deformations due to differences in tissue properties, temporal changes due to growth or atrophy, or differences between individuals. Deformation-based morphometry uses the resulting deformation fields from these transforms to evaluate differences between the images being registered. Three methods of registration were evaluated: rigid (affine) transformation, elastic optical flow transformation, and elastic spline transformation. All three methods produce vector deformation fields that map each point in one image to a point in the other image. A 12-color map of the transformation Jacobian was used to represent local volume changes. Using the three registration methods, color-mapped Jacobians were determined using a simulated three-dimensional block with known translation, rotation, expansion, contraction, and intensity modulations. Color-coded Jacobians were also generated for experimentally measured magnetic resonance image volumes of water-filled balloons and 7-year-old twin boys. Color-coded Jacobians overlaid on anatomical images provide a convenient method to identify regional tissue expansion and contraction.  相似文献   

10.
Because of a different imaging mechanism and highly complexity of body tissues and structures. Different modality medical images provide non-overlay complementary information. This has very important significance for multimodal medical image registration. Image registration is the first and key part of problem to be solved in the integrations. When the spatial position of two medical images is same, the registration could be achieved. For two CT and PET images, the principal axis method is adopted to achieve the rough registration. The modified simplex algorithm is employed to implement global search using the mutual information as similarity measure. The initial registration parameters are achieved through principal axis Based on the results of test, improved simplex method can adjust reflecting distance. Stepped-up optimization algorithm on the new experimental points through the methods of “reflection”, “enlargement”, “shrinkage” or “global systolic”. A mutual information registration based on modified simplex optimization method is presented in this paper to improve the speed of medical image registration.Results indicate that the proposed registration method prevents the optimizing process from falling into local extremum and improves the convergence speed while keeping the precision. The accurate registration of multimodal image with different resolutions is achieved.  相似文献   

11.
Reliable and efficient vessel cross-sectional boundary extraction is very important for many medical magnetic resonance (MR) image studies. General purpose edge detection algorithms often fail for medical MR images processing due to fuzzy boundaries, inconsistent image contrast, missing edge features, and the complicated background of MR images. In this regard, we present a vessel cross-sectional boundary extraction algorithm based on a global and local deformable model with variable stiffness. With the global model, the algorithm can handle relatively large vessel position shifts and size changes. The local deformation with variable stiffness parameters enable the model to stay right on edge points at the location where edge features are strong and at the same time, fit a smooth contour at the location where edge features are missing. Directional gradient information is used to help the model to pick correct edge segments. The algorithm was used to process MR cine phase-contrast images of the aorta from 20 volunteers (over 500 images) with excellent results.  相似文献   

12.
沈奔  张东波  彭英辉 《光子学报》2012,41(10):1236-1241
提出了一种结合全局配准和局部配准技术的眼底图像二级配准算法,该算法采用4个相连的分叉点组成的局部血管结构来代替单独的分叉点作为配准特征,通过减少配对点集,提高了配准效率.同时针对非线性形变造成的局部配准偏移较大的问题,在全局配准基础上进一步采用局部配准技术,提升了配准的准确度.实验结果表明,该算法以很高的配准效率和准确度有效实现了眼底图像的配准.  相似文献   

13.
沈奔  张东波  彭英辉 《光子学报》2014,41(10):1236-1241
提出了一种结合全局配准和局部配准技术的眼底图像二级配准算法,该算法采用4个相连的分叉点组成的局部血管结构来代替单独的分叉点作为配准特征,通过减少配对点集,提高了配准效率.同时针对非线性形变造成的局部配准偏移较大的问题,在全局配准基础上进一步采用局部配准技术,提升了配准的准确度.实验结果表明,该算法以很高的配准效率和准确度有效实现了眼底图像的配准.  相似文献   

14.
基于多相组重建的航空图像超分辨率算法   总被引:1,自引:0,他引:1       下载免费PDF全文
何林阳  刘晶红  李刚 《物理学报》2015,64(11):114208-114208
为提高航空图像的空间分辨率, 提出一种基于多相组重建的超分辨率算法. 融合图像间的互补信息, 将多帧低分辨率图像作为图像基, 参考帧分解为多相组, 利用差异采样特性构建图像基与参考帧之间的的多相组线性关系重建得到高分辨率图像的多项组, 经图像多相分解逆变换获得融合的高分辨率图像. 根据该融合图像的局部内容和结构信息自适应调整控制核核函数, 应用改进的控制核回归算法去除图像模糊和噪声得到清晰的超分辨率图像. 与传统算法相比, 该算法无需图像配准和迭代过程, 计算效率极大地提高. 实验结果表明, 本文算法能够有效提高航空图像的空间分辨率, 在定量评价指标和主观视觉效果方面都有显著提高.  相似文献   

15.
One of the problems to be solved in image processing is how to eliminate image noise effectively. In this work, we brought forward a random noise filtering method based on the inter-frame registration. Firstly, we calculated the relative displacement of the adjacent frames by a registration algorithm. Then we divided the image into the overlapping area and the non-overlapping area according to the relative displacement. Finally, we do noise reduction processing for these two areas respectively. The experiments results indicate that the proposed method can reduce noise in both spatial and time domain of video images. The main advantage is that it cannot only remove noise, but also effectively protect the image edge and detail information. Besides, it not only maintains the de-noising effect of traditional inter-frame algorithm, but also is suitable for moving targets. It has better real-time performance and wider application range.  相似文献   

16.
刘聪  李言俊  张科 《光子学报》2014,39(12):2257-2262
在二维魏格纳分布的框架内,针对魏格纳变换的交叉项问题和计算量大的问题,提出了合成孔径雷达图像局部伪魏格纳变换的目标和目标阴影的分割方法.首先,将合成孔径雷达图像进行二维伪魏格纳变换,得到各像素点的二维能量谱图|然后提取各像素点的二维能量谱图对应位置值形成多个不同频段的与原图像同大小的能量谱图|最后,对不同频段的能量谱图采用不同的处理方法后,将各能量谱图相加处理后形成区域标识图像,最终得到原图像的目标和目标阴影分割图像.本文利用该方法对MSTAR切片图像进行了分割试验,并对分割图像与频谱最大值距离或方位分割算法和基于双参量CFAR与隐马尔科夫联合分割算法进行了分割图像对比度对比.实验结果表明,采用本文算法的合成孔径雷达分割图像,对比度明显提高,且保留了目标图像细节.  相似文献   

17.
针对传统特征提取拼接算法在复杂图像中配准过程中出现的过多误匹配,导致拼接后图像出现鬼影、模糊等问题,从而影响拼接图像的质量,提出一种改进的SIFT配准算法。在对目标图像提取SIFT特征后,利用SIFT描述子的尺度以及梯度方向信息建立最小邻域匹配剔除误匹配点,之后利用局部均方根误差(RMSE)评价映射矩阵与RANSAC算法相结合,迭代出精确变换模型。在对图像进行几何矫正后,提出一种自适应的混合线性算法对重合区域图像变换至HIS颜色空间进行图像拼接,最后得到平滑无缝的完整彩色全景拼接图像。实验结果证明,该算法在拼接复杂场景并且重合区域不多时仍有较好的准确性及稳定性。  相似文献   

18.
赵辽英  吕步云  厉小润  陈淑涵 《物理学报》2015,64(12):124204-124204
为了进一步提高遥感图像配准精度, 提出了尺度不变特征变换(SIFT)结合区域互信息优化的遥感图像配准方法. 首先利用混沌序列的随机性和遍历性, 提出一种混沌量子粒子群优化(CQPSO)算法, 在量子粒子群优化(QPSO)算法迭代陷入早熟收敛时, 采用一种新的机理引入混沌序列, 进化粒子克服早熟. 图像配准算法分为预配准和精配准两个过程. 基于SIFT算法提取特征点, 经匹配和有效地外点排除完成预配准, 然后对匹配特征点坐标进行亚像素级微调, 通过最小二乘法求得一系列匹配参数构造初始粒子群, 最后利用混沌量子粒子群优化区域互信息完成精配准, 得到最优匹配参数. 用一些标准测试函数对所提出的CQPSO和QPSO及粒子群优化(PSO)算法进行了实验比较, 另外, 对SIFT, SIFT结合PSO算法优化区域互信息, SIFT结合QPSO算法优化区域互信息和SIFT结合CQPSO算法优化区域互信息(SRC)等四种算法进行了不同分辨率遥感图像配准实验比较和不同时相遥感图像配准实验比较, 实验结果验证了所提出的CQPSO算法的优越性和SRC配准方法的有效性.  相似文献   

19.
A new solution to overcome the constraints of multimodality medical intra-subject image registration is proposed, using the mutual information (MI) of image histogram-oriented gradients as a new matching criterion. We present a rigid, multi-modal image registration algorithm based on linear transformation and oriented gradients for the alignment of T2-weighted (T2w) images (as a fixed reference) and diffusion tensor imaging (DTI) (b-values of 500 and 1250 s/mm2) as floating images of three patients to compensate for the motion during the acquisition process. Diffusion MRI is very sensitive to motion, especially when the intensity and duration of the gradient pulses (characterized by the b-value) increases. The proposed method relies on the whole brain surface and addresses the variability of anatomical features into an image stack. The sparse features refer to corners detected using the Harris corner detector operator, while dense features use all image pixels through the image histogram of oriented gradients (HOG) as a measure of the degree of statistical dependence between a pair of registered images. HOG as a dense feature is focused on the structure and extracts the oriented gradient image in the x and y directions. MI is used as an objective function for the optimization process. The entropy functions and joint entropy function are determined using the HOGs data. To determine the best image transformation, the fiducial registration error (FRE) measure is used. We compare the results against the MI-based intensities results computed using a statistical intensity relationship between corresponding pixels in source and target images. Our approach, which is devoted to the whole brain, shows improved registration accuracy, robustness, and computational cost compared with the registration algorithms, which use anatomical features or regions of interest areas with specific neuroanatomy. Despite the supplementary HOG computation task, the computation time is comparable for MI-based intensities and MI-based HOG methods.  相似文献   

20.
Acquisition of MR images involves their registration against some prechosen reference image. Motion artifacts and misregistration can seriously flaw their interpretation and analysis. This article provides a global registration method that is robust in the presence of noise and local distortions between pairs of images. It uses a two-stage approach, comprising an optional Fourier phase-matching method to carry out preregistration, followed by an iterative procedure. The iterative stage uses a prescribed set of registration points, defined on the reference image, at which a robust nonlinear regression is computed from the squared residuals at these points. The method can readily accommodate general linear, or even nonlinear, registration transformations on the images. The algorithm was tested by recovering the registration transformation parameters when a 256 × 256 pixel T21-weighted human brain image was scaled, rotated, and translated by prescribed amounts, and to which different amounts of Gaussian noise had been added. The results show subpixel accuracy of recovery when no noise is present, and graceful degradation of accuracy as noise is added. When 40% noise is added to images undergoing small shifts, the recovery errors are less than 3 pixels. The same tests applied to the Woods algorithm gave slightly inferior accuracy for these images, but failed to converge to the correct parameters in some cases of large-scale-shifted images with 10% added noise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号