首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Using Green's function method, we investigate the spin transport properties of armchair graphene nanoribbons (AG- NRs) under magnetic field and uniaxial strain. Our results show that it is very difficult to transform narrow AGNRs directly from semiconductor to spin gapless semiconductors (SGS) by applying magnetic fields. However, as a uniaxial strain is exerted on the nanoribbons, the AGNRs can transform to SGS by a small magnetic field. The combination mode be- tween magnetic field and uniaxial strain displays a nonmonotonic arch-pattern relationship. In addition, we find that the combination mode is associated with the widths of nanoribbons, which exhibits group behaviors.  相似文献   

2.
余欣欣  谢月娥  欧阳滔  陈元平 《中国物理 B》2012,21(10):107202-107202
By the Green’s function method,we investigate spin transport properties of a zigzag graphene nanoribbon superlattice(ZGNS) under a ferromagnetic insulator and edge effect.The exchange splitting induced by the ferromagnetic insulator eliminates the spin degeneracy,which leads to spin-polarized transport in structure.Spin-dependent minibands and minigaps are exhibited in the conductance profile near the Fermi energy.The location and width of the miniband are associated with the geometry of the ZGNS.In the optimal structure,the spin-up and spin-down minibands can be separated completely near the Fermi energy.Therefore,a wide,perfect spin polarization with clear stepwise pattern is observed,i.e.,the perfect spin-polarized transport can be tuned from spin up to spin down by varying the electron energy.  相似文献   

3.
Freestanding honeycomb borophene is unstable due to the electron-deficiency of boron atoms. B_2H_2 monolayer, a typical borophene hydride, has been predicted to be structurally stable and attracts great attention. Here, we investigate the electronic structures of B_2H_2 nanoribbons. Based on first-principles calculations, we have found that all narrow armchair nanoribbons with and without mirror symmetry(ANR-s and ANR-as, respectively) are semiconducting. The energy gap has a relation with the width of the ribbon. When the ribbon is getting wider, the gap disappears. The zigzag ribbons without mirror symmetry(ZNR-as) have the same trend. But the zigzag ribbons with mirror symmetry(ZNR-s) are always metallic. We have also found that the metallic ANR-as and ZNR-s can be switched to semiconducting by applying a tensile strain along the nanoribbon. A gap of 1.10 eV is opened under 16% strain for the 11.0-■ ANR-as. Structural stability under such a large strain has also been confirmed. The flexible band tunability of B_2H_2 nanoribbon increases its possibility of potential applications in nanodevices.  相似文献   

4.
Electronic transport through a vibrating double quantum dot (DQD) in contact with noncollinear ferromagnetic (FM) leads is investigated. The state transition between the two dots of the DQD is excited by an AC microwave driving field. The corresponding currents and differential conductance are calculated in the Coulomb blockade regime by means of the Born-Markov master equation. It is shown that the interplay between electrons and phonons gives rise to phonon-assisted tunneling resonances and Franck-Condon blockade under certain conditions. In noncollinear magnetic configurations, spin-blockade effects are also observed, and the angle of polarization has some influence on the transport characteristics.  相似文献   

5.
Dynamic tensile properties of glass-fiber polymer composites embedded with ZnO nanowhiskers are investigated by a split Hopkinson tensile bar. The stress-strain curves, ultimate strength, failure strain and elastic modulus are obtained and the failure mechanism of the composites is investigated by the macroscopic and microscopic observation of fractured specimens. The strain rate effect on the mechanical behavior is discussed and a constitutive model is derived by simulating the experimental data. The experimental results show that the materials have an obvious non-linear constitutive relation and strain rate strengthening effect. The composites with ZnO nanowhiskers under dynamic loading have various failure modes and better mechanical properties.  相似文献   

6.
Resonance Transport of Graphene Nanoribbon T-Shaped Junctions   总被引:1,自引:0,他引:1       下载免费PDF全文
We investigate the transport properties of T-shaped junctions composed of armchair graphene nanoribbons of different widths. Three types of junction geometries are considered. The junction conductance strongly depends on the atomic features of the junction geometry. When the shoulders of the junction have zigzag type edges, sharp conductance resonances usually appear in the low energy region around the Dirac point, and a conductance gap emerges. When the shoulders of the junction have armchair type edges, the conductance resonance behavior is weakened significantly, and the metal-metal-metal junction structures show semimetallic behaviors. The contact resistance also changes notably due to the various interface geometries of the junction.  相似文献   

7.
The spin-dependent electronic transport properties of a zigzag zinc oxide(ZnO) nanoribbon are studied by using density functional theory with non-equilibrium Green's functions. We calculate the spin-polarized band structure, projected density of states, Bloch states, and transmission spectrum of the ZnO nanoribbon. It is determined that all Bloch states are located at the edge of the ZnO nanoribbon. The spin-up transmission eigenchannels are contributed from Zn 4s orbital,whereas the spin-down transmission eigenchannels are contributed from Zn 4s and O 2p orbitals. By analyzing the current–voltage curves for the opposite spins of the ZnO nanoribbon device, negative differential resistance(NDR) and spin filter effect are observed. Moreover, by constructing the ZnO nanoribbon modified by the Zn-edge defect, the spin-up current is severely suppressed because of the destruction of the spin-up transmission eigenchannels. However, the spin-down current is preserved, thus resulting in the perfect spin filter effect. Our results indicate that the ZnO nanoribbon modulated by the edge defect is a practical design for a spin filter.  相似文献   

8.
In situ angle dispersive synchrotron X-ray diffraction and Raman scattering measurements under pressure are em- ployed to study the structural evolution of Cu4Bi4S9 nanoribbons, which are fabricated by using a facile solvothermal method. Both experiments show that a structural phase transition occurs near 14.5 GPa, and there is a pressure-induced re- versible amorphization at about 25.6 GPa. The electrical transport property of a single Cu4Bi4S9 nanoribbon under different pressures is also investigated.  相似文献   

9.
<正>It is known that the strength of concrete is seriously affected by damage and cracking.In this paper,six concrete samples under different damage levels are studied.The experimental results show a linear dependence of the resonance frequency shift on strain amplitude at the fundamental frequency,and approximate quadratic dependence of the amplitudes of the second and third harmonics on strain amplitude at the fundamental frequency as well.In addition,the amplitude of the third harmonics is shown to increase with the increase of damage level,which is even higher than that of the second harmonics in samples with higher damage levels.These are three properties of non-classical nonlinear acoustics.The nonlinear parameters increase from 10~6 to 10~8 with damage level,and are more sensitive to the damage level of the concrete than the linear parameters obtained by using traditional acoustics methods.So,this method based on non-classical nonlinear acoustics may provide a better means of non-destructive testing(NDT) of concrete and other porous materials.  相似文献   

10.
The effects of uniaxial tensile strain on the structural and electronic properties of positively charged oxygen vacancy defects in amorphous silica(a-SiO2)are systematically investigated using ab-initio calculation based on density functional theory.Four types of positively charged oxygen vacancy defects,namely the dimer,unpuckered,and puckered four-fold(4×),and puckered five-fold(5×)configurations have been investigated.It is shown by the calculations that applying uniaxial tensile strain can lead to irreversible transitions of defect structures,which can be identified from the fluctuations of the curves of relative total energy versus strain.Driven by strain,a positively charged dimer configuration may relax into a puckered 5×configuration,and an unpuckered configuration may relax into either a puckered 4×configuration or a forward-oriented configuration.Accordingly,the Fermi contacts of the defects remarkably increase and the defect levels shift under strain.The Fermi contacts of the puckered configurations also increase under strain to the values close to that of Eα′center in a-SiO2.In addition,it is shown by the calculations that the relaxation channels of the puckered configurations after electron recombination are sensitive to strain,that is,those configurations are more likely to relax into a two-fold coordinated Si structure or to hold a puckered structure under strain,both of which may raise up the thermodynamic charge-state transition levels of the defects into Si band gap.As strain induces more puckered configurations with the transition levels in Si band gap,it may facilitate directly the development of oxide charge accumulation and indirectly that of interface charge accumulation by promoting proton generation under ionization radiation.This work sheds a light on understanding the strain effect on ionization damage at an atomic scale.  相似文献   

11.
鲁重贤 《中国物理》2007,16(3):635-639
The Eotvos experiment on the verification of equivalence between inertial mass and gravitational mass of a body is famous for its accuracy. A question is, however, can these experimental results be applied to the case of a physical space in general relativity, where the space coordinates could be arbitrary? It is pointed out that it can be validly applied because it has been proven that Einstein's equivalence principle for a physical space must have a frame of reference with the Euclidean-like structure. Will claimed further that such an overall accuracy can be translated into an accuracy of the equivalence between inertial mass and each type of energy. It is shown that, according to general relativity, such a claim is incorrect. The root of this problem is due to an inadequate understanding of special relativity that produced the famous equation E=mc^2, which must be understood in terms of energy conservation. Concurrently, it is pointed out that this error is a problem in Will's book, ‘Theory and Experiment in Gravitational Physics'.  相似文献   

12.
In this paper, we present a new integration algorithm based on the discrete Pfaff-Birkhoff principle for Birkhoffian systems. It is proved that the new algorithm can preserve the general symplectic geometric structures of Birkhoffian systems. A numerical experiment for a damping oscillator system is conducted. The result shows that the new algorithm can better simulate the energy dissipation than the R-K method, which illustrates that we can numerically solve the dynamical equations by the discrete variational method in a Birkhoffian framework for the systems with a general symplectic structure. Furthermore, it is demonstrated that the results of the numerical experiments are determined not by the constructing methods of Birkhoffian functions but by whether the numerical method can preserve the inherent nature of the dynamical system.  相似文献   

13.
The exchange bias (EB) of the ferromagnetic (FM)/antiferromagnetic (AFM) bilayers in a compensated case is studied by use of the many-body Green's function method of quantum statistical theory. The so-called compensated case is that there is no net magnetization on the AFM side of the interface. Our conclusion is that the EB in this case is primarily from the asymmetry of the interracial exchange coupling strengths between the FM and the two sublattices of the AFM. The effects of the layer thickness, temperature and the interracial coupling strength oi2 the exchange bias HE are investigated. The dependence of HE on the FM layer thickness and temperature is qualitatively in agreement with experimental results. HE is nearly inversely proportional to FM thickness. When temperature varies, both HE and He decrease with temperature increasing. The anisotropy of the FM layer only slightly influence He, but does not influence HE.  相似文献   

14.
This paper investigates the dynamic evolution with limited learning information on a small-world network. In the system, the information among the interaction players is not very lucid, and the players are not allowed to inspect the profit collected by its neighbors, thus the focal player cannot choose randomly a neighbor or the wealthiest one and compare its payoff to copy its strategy. It is assumed that the information acquainted by the player declines in the form of the exponential with the geographical distance between the players, and a parameter V is introduced to denote the inspect-ability about the players. It is found that under the hospitable conditions, cooperation increases with the randomness and is inhibited by the large connectivity for the prisoner's dilemma; however, cooperation is maximal at the moderate rewiring probability and is chaos with the connectivity for the snowdrift game. For the two games, the acuminous sight is in favor of the cooperation under the hospitable conditions; whereas, the myopic eyes are advantageous to cooperation and cooperation increases with the randomness under the hostile condition.  相似文献   

15.
We study theoretically the possibility of superconductivity state in pure graphene within the extended attractive Hubbard model. In the absence of disorder, when we use the local attractive interaction potential, U ≌ 5t, where t is hopping term, pure graphene can be in superconductivity state.  相似文献   

16.
Conductivities tomography with the interactions of magnetic field, electrical field, and ultrasound field is presented in this paper. We utilize a beam of ultrasound in scanning mode instead of the traditional ultrasound field generated by point source. Many formulae for the reconstruction of conductivities are derived from the voltage signals detected by two electrodes arranged somewhere on tissue's surface. In a forward problem, the numerical solutions of ultrasound fields generated by the piston transducer are calculated using the angular spectrum method and its Green's function is designed approximately in far fields. In an inverse problems, the magneto-acousto-electrical voltage signals are proved to satisfy the wave equations if the voltage signals are extended to the whole region from the boundary locations of transducers. Thus the time-reversal method is applied to reconstructing the curl of the reciprocal current density. In addition, a least square iteration method of recovering conductivities from reciprocal current densities is discussed.  相似文献   

17.
In this study, we evaluate the values of lattice thermal conductivity κL of type Ⅱ Ge clathrate (Ge34) and diamond phase Ge crystal (d-Ce) with the equilibrium molecular dynamics (EMD) method and the Slack's equation. The key parameters of the Slack's equation are derived from the thermodynamic properties obtained from the lattice dynamics (LD) calculations. The empirical Tersoff's potential is used in both EMD and LD simulations. The thermal conductivities of d-Ge calculated by both methods are in accordance with the experimental values. The predictions of the Slack's equation are consistent with the EMD results above 250 K for both Ge34 and d-Ge. In a temperature range of 200-1000 K, the κL value of d-Ge is about several times larger than that of Ge34.  相似文献   

18.
This paper concerns with the master-slave exponential synchronization analysis for a class of general Lur'e systems with time delay. Different from the previous methods based on the differential inequality technique, a new approach is proposed to derive some new exponential synchronization criteria. The restriction that the control width has to be larger than the time delay is removed. This leads to a larger application scope for our method. Moreover, no transcendental equation is involved in the obtained result, which reduces the computational burden. Two examples are given to validate the theoretical results.  相似文献   

19.
张开彪  张红  程新路 《中国物理 B》2016,25(3):37104-037104
The graphene/hexagonal boron-nitride(h-BN) hybrid structure has emerged to extend the performance of graphenebased devices. Here, we investigate the tunable plasmon in one-dimensional h-BN/graphene/h-BN quantum-well structures.The analysis of optical response and field enhancement demonstrates that these systems exhibit a distinct quantum confinement effect for the collective oscillations. The intensity and frequency of the plasmon can be controlled by the barrier width and electrical doping. Moreover, the electron doping and the hole doping lead to very different results due to the asymmetric energy band. This graphene/h-BN hybrid structure may pave the way for future optoelectronic devices.  相似文献   

20.
In this paper, based on the theorem of the high-order velocity energy, integration and variation principle, the high-order Hamilton's principle of general holonomic systems is given. Then, three-order Lagrangian equations and four-order Lagrangian equations are obtained from the high-order Hamilton's principle. Finally, the Hamilton's principle of high-order Lagrangian function is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号