首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thin films of hydrogenated Bi2Sr2CaCu2O8 show three O–H vibrational absorption bands that shift upon deuteration with frequency ratiosv O-H/v O-D1.3, as expected for local modes. The band positions indicate that hydrogen atoms may be located at two different sites, namely in CuO2 layers and, for the most part, in BiO double layers. The temperature dependences of these absorption bands give no hint of any direct interactions between the O–H vibrational modes and the superconducting phase transition.  相似文献   

2.
Acta physica Academiae Scientiarum Hungaricae - Producing various surface hydroxil concentrations on Al2O3 films by surface reactions it was found that there is a distinct relation between the...  相似文献   

3.
Optics and Spectroscopy - The specific features of the local structure of ZrO2–Sc2O3–Y2O3 and ZrO2–Sc2O3–Yb2O3 crystals are revealed by optical spectroscopy using the Eu3+...  相似文献   

4.
The electron paramagnetic resonance of γ-irradiated single crystals of K2C2O4.H2O and (NH4)2C2O4.H2O has been studied. The spectra show interesting microwave power saturation effects. The singlet spectrum is attributed to the C2O4 - radical derived from the C2O4 -- ion. The principal g-values are determined to be 1·998, 2·0028 and 2·0004. Certain weak lines are observed with different power saturation and interpreted as due to OH radicals derived from water molecules in the crystal lattice.  相似文献   

5.
许英  曾雉 《中国物理快报》2007,24(1):184-186
The spinel structure LiV2O4 is studied by local density approximation (LDA) as well as including strong correlation correction potential, i.e. the LDA+U scheme, which concerns the strongly correlated interaction. With LDA, the orbitals of V 3d and O 2p are well separated so that it presents purely metallic heavv fermion behaviour. The total energy of ferromagnetic phase is slightly lower than that of paramagnetic phase within the LDA ap- proach. This implies that the ferromagnetic instability as a consequence of spin frustrated magnetism can be observed in experiments. The strong correlation interaction by using LDA+U enhances the exchange splitting. The heavy-fermion feature can be derived from the sharp peak around the Fermi level from the density of states.  相似文献   

6.
Rovibrational spectra of Ar–D2O and Kr–D2O complexes are measured in the v2 bend region of D2O monomer using a tunable mid-infrared diode laser spectrometer. One para and two ortho bands for both complexes are identified and then analyzed in terms of a nearly free internal rotor model. Molecular constants for the excited vibrational states, including band-origin, rotational and centrifugal distortion constants, and Coriolis coupling constant, are determined accurately. A comparison of the observed band-origins of Ar–D2O and Kr–D2O with the previous results of Ne–D2O shows regular trends of shift from Kr–D2O to Ne–D2O.  相似文献   

7.
ABSTRACT

The blue phase of YBa2Cu3O7- δ (YBCO) family, Y2Cu2O5 (Y202) nanoparticles were prepared and doped into (YBCO) superconductor and the effect of doping on critical current density and critical temperature was investigated. Y202 nanoparticles with particle sizes of 47, 107 and 206?nm were prepared by a sol–gel combustion method and added into the YBCO superconductor by 0.5–2?wt.%. XRD and scanning electron microscope measurements were used to characterize the samples. The measurement of critical current density at 77?K revealed that the doped superconductors had larger critical current density compared to the undoped superconductors. For a fixed dopant concentration, by increasing the size of nanoparticles, the Jc was increased. For the samples including 0.5?wt.% of nanoadditives, Jc was higher. The highest critical current density of 137?A/cm2 was measured for the superconductors containing 0.5?wt.% of 206?nm Y202 nanoparticles. Also, by increasing the nanoparticles concentration, the Tc was reduced.  相似文献   

8.
9.
A glass matrix with nominal composition 50Li2O·45B2O3·5Al2O3 (mol%) was synthesized, and its physical properties were investigated by differential thermal analysis (DTA), X-ray diffraction (XRD), and atomic force microscopy (AFM). The glass transition temperature T g, the crystallization-onset temperature T x,, the crystallization peak temperatures T c1 and T c2, and the fusion peak temperatures T m1 and T m2 were determined from at least two glass matrix phases to be approximately 382, 457, 486, 574, 761, and 787?°C, respectively, at 5?°C/min heating rate. Heat treatments at 450?°C for an increasing sequence of time intervals allowed control over the amount of crystallization. Additional information on the crystallization kinetics for the LBA glass matrix was gathered from AFM images, DTA thermograms, and XRD diffractograms. The latter technique showed that LiBO2 (ICDD-16568) and Li3AlB2O6 (ICDD-51754) phases are formed in the glass?Cceramic system. Debye?CScherrer analysis of the XRD peaks revealed a competition between the evolutions of crystal phases during heat treatment. Activation energies for crystallization, obtained from theoretical models applied to the DTA data showed that the crystallization is heterogeneous. The AFM images demonstrated that this heterogeneous crystallization starts at the surface of the LBA glass matrix and identified crystal sizes in agreement with the results of the Debye?CScherrer analysis. Our study shows that thermal and structural characterization techniques can be combined with theoretical results drawn from well-tested models to offer a unified view of crystallization in a glass?Cceramics system.  相似文献   

10.
The conductivity of glasses in the 50\textP\text2 \textO\text5 - x\textV\text2 \textO\text5 - ( 50 - x )\textLi\text2 \textO50{\text{P}}_{\text{2}} {\text{O}}_{\text{5}} - x{\text{V}}_{\text{2}} {\text{O}}_{\text{5}} - \left( {50 - x} \right){\text{Li}}_{\text{2}} {\text{O}} system was studied as a function of temperature and composition. For all compositions, the conductivity variation as a function of temperature followed an Arrhenius type relationship. Isothermal variation of conductivity as a function of composition showed a minimum for a molar ratio x near 20. Probable mechanisms for decrease of conductivity with decrease of vanadium oxide concentration were explained. The minimum in room temperature was attributed to increase of V4+/V5+ with decrease of vanadium oxide in specific concentrations of vanadium oxide. Activation energy increased with decrease of V2O5 content. This behavior was attributed to increase of average spacing between vanadium ions.  相似文献   

11.
The crystallization behaviors of MgO–Al2O3–SiO2–TiO2 system glasses doping with different content Fe2O3 were investigated by means of differential thermal analysis and X-ray diffraction. The kinetic parameter of activation energy for crystallization (E) was obtained by the Owaza Johnson–Mehl–Avrami method. The results show that during the heat treatment, the intermediate phase of µ-cordierite initially precipitated from the glass matrix, and with the increasing temperature, it transformed to α-cordierite. The more the Fe2O3 content, the lower the crystallization peak temperature (T p).But the lowering of T p value did not mean that the value of E decreases correspondingly. The experimental results suggest that only with appropriate content (about 4.2 wt%), Fe2O3 can promote the crystallization of this glass effectively.  相似文献   

12.
Infrared (IR) and UV spectra of ternary Li2O–CuO–P2O5 glasses in two series Li2O(65−X)%–CuO(X%)–P2O5(35%), X = 20, 30, 40 and Li2O(55−X)%–CuO(X%)–P2O5(45%), X = (10, 20, 30) were studied. Infrared (IR) investigations showed the metaphosphate and pyrophosphate structures and with increase of CuO content in metaphosphate glass, the skeleton of metaphosphate chains is gradually broken into short phosphate groups such as pyrophosphate. IR spectra showed one band at about 1,220 and 1,260 cm−1 for P2O5(35%) and P2O5(45%) series, respectively, assigned to P=O bonds. For CuO additions ≤20 mol%, the glasses exhibit two bands in the frequency range 780–720 cm−1 which are attributed to the presence of two P–O–P bridges in metaphosphate chain. But for CuO addition ≥30 mol%, the glasses exhibit only a single band at 760 cm−1 which is assigned to the P–O–P linkage in pyrophosphate group. In optical investigations, absorption coefficient versus photon energy showed three regions: low energy side, Urbach absorption, and high energy side. In Urbach’s region, absorption coefficient depends exponentially on the photon energy. At high energy region, optical gap was calculated and investigations showed indirect transition in compounds and decreases in optical gap with increases of copper oxides contents that is because of electronic transitions and increasing of nonbridging oxygen content.  相似文献   

13.
Optically clear glasses in the ZnO–Bi2O3–B2O3 (ZBBO) system were fabricated via the conventional melt-quenching technique. Dielectric constant and loss measurements carried out on ZBBO glasses unraveled nearly frequency (1 kHz–10 MHz)-independent dielectric characteristics associated with significantly low loss (D?=?0.004). However, weak temperature response was found with temperature coefficient of dielectric constant 18?±?4 ppm °C?1 in the 35–250 °C temperature range. The conduction and relaxation phenomena were rationalized using universal AC conductivity power law and modulus formalism respectively. The activation energy for relaxation determined using imaginary parts of modulus peaks was 2.54 eV which was close to that of the DC conduction implying the involvement of similar energy barriers in both the processes. Stretched and power exponents were temperature dependent. The relaxation and conduction in these glasses were attributed to the hoping and migration of Bi3+ cations in their own and different local environment.  相似文献   

14.
Glasses of the general formula xLi2O·(20?x)CaO·30P2O5·30V2O5·20Fe2O3 with x=0, 5, 10, 15 and 20 mol% were prepared; IR, density, electrical and dielectric properties have been investigated. Lithia-containing glasses revealed more (P2O7)4?, FeO6, V–O? and PO? groups and mostly have lower densities than those of lithia-free ones. The electrical properties showed random behavior by replacing Li2O for CaO, which has been assigned to the change of the glass structure. The results of activation energy and frequency-dependent conductivity indicate that the conduction proceeds via electronic and ionic mechanisms, the former being dominant. The mechanism responsible for the electronic conduction is mostly thermally activated hopping of electrons from Fe(II) ions to neighboring Fe(III) sites and/or from V4+ to V5+. The dielectric constant (ε′) showed values that depend on the structure of glass according to its content of Li2O. The (ε′) values are ranging between 3 and 41 at room temperature for 1 kHz, yet at high temperatures, glass with 20 mol Li2O exhibits values of 110 and 3600 when measurement was carried out in the range 0.1–1 kHz, and at 5 MHz, respectively.  相似文献   

15.
Abstract

(50?x/2)Na2O–xCuO–(50?x/2)P2O5 glasses (x=1, 5, 15, or 30 mol%) have been prepared and characterized by electron paramagnetic resonance (EPR) and magnetic susceptibility measurements. The shape of the Cu2+ EPR spectrum depends on the Cu content, and the corresponding computer simulations suggest that the Cu2+ ions occupy two different sites in these glasses: one of them is preponderant at low Cu content and the other is preponderant at high content, in which the Cu2+–Cu2+ interactions are more important. From EPR parameters, it was found that for the site at low content, the covalency of copper ion bonding with the surrounding ligands is appreciable. The magnetic susceptibility data appear to follow the Curie–Weiss law (χ=C/(Tp)) with negative paramagnetic Curie temperature θp indicating antiferromagnetic interactions between Cu2+ ions that are more significant in the samples with high Cu content, in agreement with EPR results.  相似文献   

16.
17.
The high-temperature phase of 3Bi2O3·2TeO2 binary oxide is characterized by thermal analysis, X-ray powder diffraction, and125Te Mössbauer spectroscopy. The phase, obtained by rapid quenching from 900 °C, is identified to be cubic Bi6Te2O13 with an oxygen-deficient fluorite structure, which is isomorphous with -Bi2O3.  相似文献   

18.
Bioactive phosphate glasses have been widely investigated for bone repair. Phosphate glass system of 47P2O5–30.5CaO–(22.5?x)Na2O–xB2O3 has been prepared by melt quenching technique. From the Raman analysis, it is confirmed that phosphate network form metaphosphate structure. Bioactivity of the glass is studied by immersing the prepared glass in simulated body fluid (SBF). All the glasses exhibited bioactivity after soaking in SBF. Addition of B2O3 to the glass by replacing the Na2O produces considerable effect on the dielectric and bioactivity of the glass. Ion dynamics are also analyzed through imaginary modulus and imaginary dielectric permittivity.  相似文献   

19.
20.
Al2O3 was added to a 2CaO–La2O3–5P2O5 metaphosphate, to replace 10% of the Ca2+ ions by Al3+, forming a phosphate with the nominal composition 1.8CaO–0.1Al2O3–La2O3–5P2O5. The effect of Al2O3 addition and heat treatment on the microstructure and conductivity of the resulting glass–ceramics was investigated by XRD, SEM, TEM, and AC impedance spectroscopy. Upon transformation from glass to glass–ceramic, conductivities increased significantly. The glasses were isochronally transformed at 700 and at 800 °C for 1 h or 5 h, in air, following heating at 3 or 10 °C/min. With Al2O3 addition, after a heat treatment at 700 °C, 100–300 nm nano-domains of LaP3O9 crystallized from the glass matrix. Annealing at 800 °C produced a further order of magnitude conductivity increase for the Al-free glass, but less so for the Al-containing glass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号