首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 768 毫秒
1.
In this paper, species versus temperature profiles were measured during the oxidation of 1,3-butadiene in a jet-stirred reactor (JSR) at 1 atm, at different equivalence ratios (φ = 0.5, 1.0 and 2.0), in the temperature range 600 – 1020 K. Both synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) and gas chromatography (GC) methods were used to analyze the species. The experimental results show that a large proportion of the products are aldehydes (formaldehyde, acetaldehyde, acrolein, etc.) and ketenes (ketene, methyl-ketene), with acrolein being one of the major products. Moreover, furan, 1,3-cyclopentadiene and benzene are also present as intermediates in significant amounts. The reaction pathways leading to the formation of these species are discussed in detail. A new detailed mechanism, NUIGMech1.3, was developed to simulate these new data as well as other experimental data available in the literature. The validation results indicate that quantum calculations are also needed to explore the formation of some important species formed in the oxidation of 1,3-butadiene. Overall, the new 1,3-butadiene mechanism agrees well with various experimental data in the low- to high-temperature regimes and at different pressures. Flux and sensitivity analyses show that 1,3-butadiene shares some common reaction chemistry pathways with 1- and 2-butene via Ḣ atom and HȮ2 radical addition to the C = C double bond in 1,3-butadiene, reactions which are important for both systems. The low temperature chemistry of 1,3-butadiene is mainly controlled by the reaction pathways of ȮH radical addition to the C = C double bond of the fuel molecule. The 1-buten-4-ol-3-yl radicals so formed subsequently add to O2 and react via the Waddington mechanism, which is important in accurately simulating the oxidation and auto-ignition of 1,3-butadiene at engine relevant conditions.  相似文献   

2.
采用紧凑Tesla变压器型脉冲功率驱动源及球电极击穿试件,通过改变初级充电电压,开展了微秒级充电条件下碳酸丙烯酯及其与碳酸乙烯酯的混合液的击穿实验研究。由结果和分析可知:碳酸丙烯酯理论工作温度可低至-55℃,这意味着它可以成为一种低温下的良好液体电介质;碳酸丙烯酯耐压性能与去离子水相当,且实测电阻率达到了10 MΩ·cm以上;向碳酸丙烯酯中添加碳酸乙烯酯后,介电常数可提高至80以上,耐压强度也有所提升;将碳酸丙烯酯、碳酸乙烯酯/碳酸丙烯酯混合液用于脉冲形成线作为储能介质无需附加去离子处理系统,有利于装置的紧凑化和小型化。  相似文献   

3.
The effects of sonochemical treatment of a NaK eutectic mixture as catalyst on the side-chain alkenylation of o-xylene with 1,3-butadiene were studied. The parameters studied include ultrasound frequency, insonation time, sonication power as well as the reaction temperature. In addition, the effect of N,N,N',N'-tetramethylethylenediamine (TMEDA) on the reaction was also studied. The results showed that sonochemical treatment of this NaK eutectic mixture catalyst resulted in excellent conversion (up to 83.16%) under mild conditions. The introduction of TMEDA further increased the conversion to 89.4%.  相似文献   

4.
In order to better understand the reactions responsible for the formation and growth of polycyclic aromatic hydrocarbons (PAH) from solid fuels, we have performed pyrolysis experiments in an isothermal laminar-flow reactor (at temperatures of 600-1000 °C and a fixed residence time of 0.3 s) with catechol, a model fuel representative of the aromatic moieties in coal and biomass fuels; 1,3-butadiene, a major product of biomass pyrolysis; and with catechol and 1,3-butadiene together (in a catechol-to-1,3-butadiene molar ratio of 0.83). No PAH of ?3 rings are produced at temperatures <700 °C, but PAH production becomes significant at temperatures ?800 °C. Analysis of the higher-temperature reaction products by high-pressure liquid chromatography with diode-array ultraviolet-visible absorbance detection has led to the identification of over 100 PAH (ranging in size to 10 fused aromatic rings) - 47 of which have never before been reported as products of any phenol-type fuel. Quantification of the product yields shows that a much higher percentage of fed carbon is converted to PAH in the catechol-only pyrolysis experiments than in the 1,3-butadiene-only pyrolysis experiments - a result attributable to catechol’s relatively labile O-H bond and capacity for generating oxygen-containing radicals, which accelerate both fuel conversion and the pyrolysis reactions leading to 1- and 2-ring aromatics and PAH. When the two fuels are co-pyrolyzed, the percentage of the total fed carbon converting to PAH is more than two times higher than the amount calculated for the hypothetical case of the two fuels together behaving as a linear combination of the two fuels individually. This elevated production of PAH from the co-pyrolysis experiments reflects not only the reaction-accelerating role of the oxygen-containing radicals but also the efficacy, as growth agents, of the C2 - and especially the C4 - species abundantly present in the catechol/1,3-butadiene co-pyrolysis environment.  相似文献   

5.
《Surface science》1996,367(1):L26-L31
The data presented here show that Pd(111) can directly activate thiophene decomposition resulting in the deposition of sulfur and the formation of C4 species, most likely C4H4 or possibly C4H5, on the surface. Temperature programmed reaction (TPR) studies of a 0.2 L exposure of thiophene show some reversible, but primarily irreversible adsorption. No C- or S-containing reaction products desorb during TPR. However, laser induced thermal desorption (LITD) with Fourier transform mass spectrometry (FTMS) can be used to monitor the surface composition prior to conventional desorption. LITD/FTMS shows that thiophene is stable to approximately 280 K. Above 300 K, 1,3-butadiene is observed. The yield of 1,3-butadiene on the surface, as observed by LITD/FTMS, is estimated to be 30% of the initial thiophene signal.  相似文献   

6.
Interference effects can lead to the formation of ripple structures at laser-irradiated poly(ethylene terephthalate) surfaces. Poly(ethylene terephthalate) surface was irradiated with linearly polarized light of a pulsed 157 nm laser. In a certain range of irradiation parameters, the irradiation resulted in the formation of coherent ripples patterns. The dimension of the pattern depends on the angle of the laser beam incidence. The surface morphology of the nano-patterned poly(ethylene terephthalate) was analyzed by atomic force microscopy and focused ion beam-scanning electron microscopy. Oxygen concentration in the modified polymer surface was studied by angular resolved X-ray induced photo-electron spectroscopy. Gold nano-layers were consecutively sputtered onto the laser irradiated poly(ethylene terephthalate) surfaces. The morphology of the sputtered gold nano-layers was investigated with atomic force microscopy too. We found that the morphology of the gold nano-layers changes and depends on the surface pattern of the laser irradiated poly(ethylene terephthalate). Formation of gold “nano-hills” is observed at the ridges of the ripple structures. The amount of oxygen together with the morphology of prepared polymer pattern may be the dominant factors controlling the gold layer growth. The present results are compared with those obtained earlier on PET irradiated with krypton fluoride laser.  相似文献   

7.
The modern catalytic or enzymatic advances allow the production of novel biofuel. Among them, 1,3-dioxolane can be produced from formaldehyde and ethylene glycol, both can be obtained from biomass. In this study, the oxidation of 1,3-dioxolane is studied at stoichiometric conditions. The ignition delay times of 1,3-dioxolane/O2/inert mixtures were measured in a shock tube and in a rapid compression machine at pressures of 20 to 40 bar and temperatures ranging from 630 to 1300 K. The pressure profiles recorded in the rapid compression machine show a first stage of ignition enlightening the influence of the low temperature chemistry of combustion. Furthermore, mole fraction profiles of the stable intermediates produced during the oxidation of 1,3-dioxolane were measured in a jet-stirred reactor at 10 bar. Following these observations, a detailed kinetic model was developed with reaction rate coefficients and thermochemical data calculated by theoretical calculations or estimated by analogies to suitable molecules. In order to get an insight into the most important reaction pathways brute force sensitivity analysis and reaction pathway analysis were performed with the proposed model and discussed. It became clear that in the fuel-in-air case for the alkylhydroperoxide of 1,3-dioxolane the ring opening beta-scission pathway is favored against the further alkane-like second addition to molecular oxygen, which leads to a limited negative temperature coefficient.  相似文献   

8.
An investigation of the output characteristics of Ti !A12O3 laser pumped by the second harmornic generation from an acoustooptic Q -switched Nd:YAG laser is made. An average output power of 5 watts has been obtained when the pump power is 14. 5 watts. The slope efficiency is 55. 5%, and the quantum efficiency is approximately 80%.  相似文献   

9.
Abstract: An investigation of the output characteristics of Ti:Al_2O_3 laser pumped by the second harmornic generation from an acoustooptic Q-switched Nd : YAG laser is made. An average output power of 5 watts has been obtained when the pump power is 14.5 watts. The slope efficiency is 55.5%, and the quantum efficiency is approximately 80%.  相似文献   

10.
The ignition temperatures of nitrogen-diluted 1,3-butadiene by heated air in counterflow were experimentally determined for pressures up to 5 atmospheres and pressure-weighted strain rates from 100 to 250 s−1. The experimental data were compared with computational results using the mechanism of Laskin et al. [A. Laskin, H. Wang and C.K. Law, Int. J. Chem. Kinet. 32 (10) (2000) 589-614], showing that while the overall prediction is approximately within the experimental uncertainty, the mechanism over-predicts ignition temperature by about 25-40 K, with the differences becoming larger at high pressure/low temperature region. Sensitivity analyses for the near-ignition states were performed for both reactions and diffusion, which identified the importance of H2/CO chain reactions, three 1,3-butadiene reaction pathways, and the binary diffusion between 1,3-butadiene and N2 on ignition. The detailed mechanism, consisting of 94 species and 614 reactions, was then simplified to a skeletal mechanism consisting of 46 species and 297 reactions by using a new reduction algorithm combining directed relation graph and sensitivity analysis. The skeletal mechanism was further simplified to a 30-step reduced mechanism by using computational singular perturbation and quasi-steady-state assumptions. Both the skeletal and reduced mechanisms mimic the performance of the detailed mechanism with good accuracy in both homogeneous and heterogeneous systems.  相似文献   

11.
L J Dhareshwar  P A Naik  H C Pant 《Pramana》1986,27(3):435-441
An enhanced spatial smoothing of ablative motion of thin plastic foil targets coated with high atomic number ablators such as gold or aluminium, irradiated by a spatially modulated Nd: glass laser beam was observed. Optical shadowgraphy coupled with double foil technique was used to observe the laser-irradiated foil motion. Laser irradiance used for the experiments was in the range of 1011–1013 watts/cm2. A 60–80% enhancement in the smoothing was observed for a laser beam modulation (width 75–150 μm) at the target surface.  相似文献   

12.
The angular distribution parameter β has been determined for the π orbitals of 1,1-dichloroethylene, tetrachloroethylene, tetrafluoroethylene, propylene, 1-butene, isobutylene, cis-2-butene, trans-2-butene, 1,3-butadiene, cyclopentene, methylacetylene and furan in the photon energy range 10–30 eV using dispersed polarized synchrotron radiation. The energy dependence of β in the photoelectron energy range 2–10 eV was found to be similar for all the π orbitais investigated. The potential use of the energy dependence of β as an aid in making molecular-orbital assignments is discussed. Resonance photoionization features similar to those observed for the π orbitals of acetylene, ethylene and benzene were found in many of the π orbitals of the molecules investigated herein. Possible explanations for these resonance features are discussed.  相似文献   

13.
本文用ESR研究MgCL2-n-BuOH-i-Bu3Al-TiCl4/i-Bu3Al催化剂乙丙共聚机理。ESR谱表明烷基化Ti3+活性中心有单空配位和双空配位两种状态,在乙烯或乙丙烯混和单体存在下ESR谱变化指出g=1.954和g=1.941的共振吸收峰和活性中心有关。结合共聚产物组成及竞聚率的13C-NMR谱分析,提出镁钛系载体催化剂活性中心上乙丙同时配位的机理。  相似文献   

14.
The effect of laser radiation with a wavelength of 1.3 μm, power of 25 kW, pulse width of 1 s, and irradiated spot area of 9 cm2 on carbon silicon carbide composite material (CSCCM) is analyzed. The formation of an ablation plume (which consists of vapor of irradiated material, burning products, drops and microparticles of various chemical composition and size) above the irradiated surface leads to a significant loss of laser energy. The fractions of the scattered and absorbed laser radiation in the plume are determined, the size and mass distributions of microparticles in the plume are estimated, their concentration is calculated, and the microparticle escape velocities from the irradiated CSCCM surface are evaluated.  相似文献   

15.
A chemiluminescent flame was produced in the reaction between GeCl4 and an excited mixture of argon or helium with oxygen. Spectra of the reaction products were recorded and studied. Relative populations of the products in analyzed electronic, vibrational and rotational states corresponded to different temperatures.  相似文献   

16.
A numerical investigation on the co-pyrolysis of 1,3-butadiene and propyne is performed to explore the synergistic effect between fuel components on aromatic hydrocarbon formation.A detailed kinetic model of 1,3-butadiene/propyne co-pyrolysis with the sub-mechanism of aromatic hydrocarbon formation is developed and validated on previous 1,3-butadiene and propyne pyrolysis experiments.The model is able to reproduce both the single component pyrolysis and the co-pyrolysis experiments,as well as the synergistic effect between 1,3-butadiene and propyne on the formation of a series of aromatic hydrocarbons.Based on the rate of production and sensitivity analyses,key reaction pathways in the fuel decomposition and aromatic hydrocarbon formation processes are revealed and insight into the synergistic effect on aromatic hydrocarbon formation is also achieved.The synergistic effect results from the interaction between 1,3-butadiene and propyne.The easily happened chain initiation in the 1,3-butadiene decomposition provides an abundant radical pool for propyne to undergo the H-atom abstraction and produce propargyl radical which plays key roles in the formation of aromatic hydrocarbons.Besides,the 1,3-butadiene/propyne co-pyrolysis includes high concentration levels of C3 and C4 precursors simultaneously,which stimulates the formation of key aromatic hydrocarbons such as toluene and naphthalene.  相似文献   

17.
Performance characteristics of power build-up cavity (PBC) as the light source of a Raman spectroscopy based gas sensor were studied. The key parameter to optimize stable and high intra-cavity power operation was beam diameter of the back reflected beam from external cavity to diode laser. The optimum diameter determined by an appropriate distance between the cavity and diode laser was found to be comparable with the waveguide cross section of diode laser for the effective spatial filtering, where inevitable cavity coupling loss caused by slight spatial mode mismatching existed. A PBC with a finesse of ∼10300 achieved a stable TEM00 mode in excess of intra-cavity power of 80 watts pumped by a 10 milliwatts diode laser. Simultaneously, the PBC wavelength is found to be passively locked effectively at 670 +/− 0.15 nm where the center of the gain region exists. A Raman spectrum of nitrogen measurement was demonstrated.  相似文献   

18.
Haibo Zhao 《Surface science》2009,603(23):3355-12149
The influence of hydrogen coadsorption on hydrocarbon chemistry on transition metal surfaces is a key aspect to an improved understanding of catalytic selective hydrogenation. We have investigated the effects of H preadsorption on adsorption and reaction of 1,3-butadiene (H2CCHCHCH2, C4H6) on Pt(1 1 1) surfaces by using temperature-programmed desorption (TPD) and Auger electron spectroscopy (AES). Preadsorbed hydrogen adatoms decrease the amount of 1,3-butadiene chemisorbed on the surface and chemisorption is completely blocked by the hydrogen monolayer (saturation) coverage (θH = 0.92 ML). No hydrogenation products of reactions between coadsorbed H adatoms and 1,3-butadiene were observed to desorb in TPD experiments over the range of θH investigated (θH = 0.6-0.9 ML). This is in strong contrast to the copious evolution of ethane (CH3CH3, C2H6) from coadsorbed hydrogen and ethylene (CH2CH2, C2H4) on Pt(1 1 1). Hydrogen adatoms effectively (in a 1:1 stoichiometry) remove sites from interaction with chemisorbed 1,3-butadiene, but do not affect adjacent sites. The adsorption energy of coadsorbed 1,3-butadiene is not affected by the presence of hydrogen on Pt(1 1 1). The chemisorbed 1,3-butadiene on hydrogen preadsorbed Pt(1 1 1) completely dehydrogenates to H2 and surface carbon upon heating without any molecular desorption detected, which is identical to that observed on clean Pt(1 1 1). In addition to revealing aspects of site blocking that should have broad implications for hydrogen coadsorption with hydrocarbon molecules on transition metal surfaces in general, these results also provide additional basic information on the surface science of selective catalytic hydrogenation of butadiene in butadiene-butene mixtures.  相似文献   

19.
The photoelectron spectra using the He I resonance line (21.22 eV) were measured for ethylene, propylene, 1-butene, cis-butene, trans-butene and 1,3-butadiene as a function of angle between the direction of the incoming photons and outgoing photoelectrons. From these data the angular parameter, β, is obtained for each photoelectron peak in each spectrum. The β value is a function of the energy of the photoelectron and the nature of the molecular orbital from which the photoelectron is ejected. A qualitative comparison is made between the experimentally derived β values and the molecular orbital assignments. In particular, it is noted that the photoelectron peak corresponding to the CC double bond π orbital yields a relatively high value of β. This has led in the case of butadiene to a confirmation that the first two photoelectron peaks both result from ionization in π orbitals.  相似文献   

20.
Using non-polarizable and polarizable molecular dynamics simulations, binary mixtures of propylene carbonate?+?dimethyl carbonate and propylene carbonate?+?ethylene carbonate with various compositions were investigated. The polarizable model produces more reasonable estimation of dielectric constants than the non-polarizable model; however, combining the electronic continuum model with the non-polarizable MD improves the comparison between the two models. Fair agreement was found between the results from these simulations and available experimental data. In addition, for a better understanding of the mixing behaviour, the excess dielectric constants over the entire composition were calculated. By comparison of the two mixtures in various mole fractions, distinctive mixing behaviours of propylene carbonate?+?dimethyl carbonate (poorly symmetric mixture) and propylene carbonate?+?ethylene carbonate (highly symmetric mixture) were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号