首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In the present study, structural properties of Mono-(2-Pyridyl) Hydrazone were studied extensively utilizing density functional theory (DFT) employing B3LYP exchange correlation. The Fourier transform infrared (solid phase) was recorded. The vibrational frequencies in the ground state were calculated by using density functional method (B3LYP) with 6-31G* and 6-311G** as basis sets. The spectral studies revealed that the title compound exists in Keto form. Spectral techniques that we employed include 1H and 13C NMR, electronic, thermal techniques. Correlation between experimental chemical shifts and GIAO/B3LYP/6-311G**-calculated isotropic shielding constants, δexp = a + bσcalc, are reported. Good linear regressions between experimental and theoretical results for 1H and 13C were obtained.  相似文献   

2.
The in?uence of the hydrogen bond formation on the nuclear magnetic resonance parameters has been investigated in the case of microhydrated ortho-aminobenzoic acid (o-Abz) in the gas-phase. DFT-B3LYP/aug-cc-pVDZ predicted 1H and 13C isotropic chemical shifts with respect to TMS of the isolated o-Abz are in reasonable agreement with available experimental data. The isotropic and anisotropic chemical shifts for all atoms of o-Abz within the o-Abz?···?(H2O)1-3 complexes have been calculated at the Hartree–Fock, and density functional (B3LYP) theoretical levels using the 6-31++G(2d,2p) and aug-cc-pVDZ basis sets and considering the counterpoise corrections for the basis set superposition errors. The chemical shift values of the carboxyl group atoms of microhydrated o-Abz relative to isolated o-abz do not show significant basis set dependence. Both the hydrogen and carbon atoms constituting the carboxyl group of o-Abz suffer downfield shift due to formation of hydrogen bond with water. The length of hydrogen bond formed between o-Abz and water is found to vary with the number of water molecules present around o-Abz. A direct correlation between the hydrogen bond length and isotropic chemical shift of the bridging hydrogen is observed for both C?=?O?···?H-O and O-H?···?O interactions.  相似文献   

3.
1H NMR spectra of epoxy-fused cyclopentane derivatives have been computationally investigated with density functional calculations in order to unravel the shielding effect of the epoxy ring on the 1H NMR chemical shifts of N-substituted epoxy-fused cyclopentane-3, 5-diol derivatives. Both 1H NMR chemical shifts and spin–spin coupling constants have been calculated with the WP04/cc-pVTZ level of theory in solution. The WP04/cc-pVTZ// B3LYP/6-31+G(d) methodology has been found to reproduce the best experimental results on epoxy-fused cyclopentane derivatives. This study is expected to lead experimentalists in their endeavour to characterize epoxy-fused cyclic systems with ease.  相似文献   

4.
Proton coupled and uncoupled 13C, 1H, DEPT, COSY and HETCOR NMR spectra of 4-Phenylpyridine (4-Phpy) have been reported for the first time except for its 1H NMR spectrum. In order to provide a precise structural elucidation for carbon atoms those have very close chemical shifts to each other, the magnitude of nJCH (n=1,2,3) coupling constants of 4-Phpy (C11H9N) have also been investigated. 13C, 1H NMR chemical shifts and 1-3JCH coupling constants of 4-Phpy have been calculated by means of B3LYP density functional method with 6-311++G(d,p) basis set. Moreover, the optimized parameters (bond lengths, bond and torsion angles) of 4-Phpy have been calculated with B3LYP at 6-31G(d) level in methanol (ε=32.63). Comparison between the experimental and the theoretical results indicates that density functional B3LYP method is able to provide satisfactory results for predicting NMR properties.  相似文献   

5.
The geometries, energies, and nuclear magnetic resonance (NMR) chemical shifts of 3 bases (trimethylphosphine, trimethylamine, and trimethylphosphine oxide), their 3 protonated cations, and 15 hydrogen‐bonded complexes (corresponding to the HF, HNC, HCN, HCCH, H2O, and CH3OH Brønsted acids) have been calculated at the B3LYP/6‐311++G(d,p) level. The determination of hydrogen bond acidities by NMR is classically performed using the 31P chemical shifts Me3PO. This method is more reliable than the use of the 15N NMR chemical shifts of Me3N. This work shows that the 31P NMR chemical shifts of Me3P cannot be used. The raison of the difference between Me3P on one hand and Me3PO and Me3N on the other will be discussed.  相似文献   

6.
The experimental 1H and 13C NMR spectra of 13 phenyl cinnamates and four 4‐methylcoumarins were investigated and their chemical shifts assigned on the basis of the two‐dimensional spectra. For the unsubstituted cinnamic acid phenyl ester, optimized molecular structures were calculated at a B3LYP/6‐311++G(d,p) level of theory. 1H and 13C NMR chemical shifts were also calculated with the GIAO method at the B3LYP/6‐311 + G(2d,p) level of theory. The comparison between experimental and calculated NMR chemical shift suggests that the experimental spectra are formed from the superposition spectra of the two lowest energy conformers of the compound in solution. The most stable s‐cis configuration found in our studies is also the conformation adopted for a related phenyl cinnamate in solid state. The experimental results were analyzed in terms of the substituent effects. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
ABSTRACT

Using computational chemistry methodology, we evaluate the proton magnetic shieldings and the corresponding chemical shifts of 12 polycyclic aromatic hydrocarbons that derive from chrysene, perylene and picene. Due to the large size of the studied compounds, we resort to density functional theory (DFT) and use it together with the B3LYP and the KT1 functionals. After a systematic method and basis set selection study carried out on methane, benzene and anthracene, the DFT(B3LYP) method and the 6-31G*, 6-31G** and 6-311++G** bases are selected to carry out the calculations, because of the efficiency in providing shifts close to the experimental data available. Additionally, we select the DFT(KT1) method together with the aug-pcS-1 basis set, and HF/6-31G* shifts are also calculated. In order to estimate the error in the theoretical results, we take as reference accurate experimental chemical shifts obtained for the molecules under investigation. Extra measurements are needed for this purpose and are included in the present work. The best combination of method and basis set is DFT(B3LYP)/6-31G**, proving to be very efficient in getting shifts close to experiment at a relatively low computational cost, and therefore we recommend it for the evaluation of proton shifts in larger polycyclic aromatic hydrocarbons.  相似文献   

8.
Geometric optimization and gauge including atomic orbital (GIAO). 1H and 13C NMR chemical shift calculations with Hartree–Fock (HF) method and density functional method (B3LYP), using the 6‐31G(d) and 6‐31+G(d) basis sets, are proposed as a tool to be applied in the structural characterization of ethene‐1,1,2,2‐tetrayltetramethylene tetrathiocyanate, thus providing useful support in the interpretation of experimental NMR data. Parameters related to linear correlation plot of computed versus experimental 13C NMR chemical shifts in DMSO‐d6 are provided.  相似文献   

9.
聚(亚硅基二炔基蒽)(PSDEA)经实验测定具有空穴传输的能力. 为了模拟此高聚物的性质, 设计了一系列亚硅基二炔基蒽(SDEA)的寡聚物,利用密度泛函理论方法在B3LYP/6-31G(d)水平上对其构型进行优化. 寡聚物的能隙随着链长的增加而减少,同时蒽环上吸电基团的存在也使能隙减少. 在B3LYP/6-31G水平上计算寡聚物的13C化学位移以及蒽环中心位置的核独立化学位移. 寡聚物中与硝基相连的碳原子的化学位移与未连硝基的寡聚物中相同碳原子的化学位移相比向高场移动. 蒽环中心的芳香性在吸电子基团存在时减弱,但随着亚硅基数目的增加而增强. 用于核独立化学位移计算的最敏感区域是蒽环上方0.1 nm处.  相似文献   

10.
Ammonia adsorption on the external surface of C30B15N15 heterofullerene was studied using density functional calculations. Three models of the ammonia-attached C30B15N15 together with the perfect model were optimized at the B3LYP/6-31G? level. The optimization process reveals that dramatic influences occurred for the geometrical structure of C30B15N15 after ammonia adsorption; the B atom relaxes outwardly and consequently the heterofullerene distorts from the spherical form in the adsorption sites. The chemical shielding (CS) tensors and nuclear quadrupole coupling constants of B and N nuclei were calculated at the B3LYP/6-311G** level. Our calculations reveal that the B atom is chemically bonded to NH3 molecule. The B atom in the NH3-attached form has the largest chemical shielding isotropic (CSI) value among the other boron nuclei. The CQ parameters of B nuclei at the interaction sites are significantly decreased after ammonia adsorption.  相似文献   

11.
吉非替尼是第一个被批准上市用于治疗晚期非小细胞肺癌(NSCLC)的药物.该文采用5种密度泛函理论(DFT)方法B3LYP,BHandHLYP,M06-2X,CAM-B3LYP和LC-wPBE在6-311++G**水平上对吉非替尼分子的红外、紫外可见光谱及核磁共振谱进行了计算,并通过比较计算值和实验值得到最佳的计算条件.研究结果表明,CAM-B3LYP和M06-2X是最佳的用于描述吉非替尼分子红外光谱的方法;B3LYP//GIAO(Gauge-Including Atomic Orbital)方法预测得到的吉非替尼在(CH3)2SO中的1H NMR与实验值最为接近,用于预测13C NMR的最佳方法是B3LYP//CSGT(Circularty Sgmmetrical Gabor Transform).  相似文献   

12.
ABSTRACT

The hydrogen-bonded bromocyclohexane–ammonia complex has been isolated and characterized for the first time in argon matrices at 16 K. Coordination of the proton adjacent to the Br substituent on the cyclohexane ring to the amino nitrogen was evidenced by distinct blue shifts of bending modes involving the H-C1–Br unit. In particular, C–C1–Br, H–C1–Br, and C–C1–H bending modes produced blue shifts ranging from 2.8 to 12.2 cm?1. Density Functional Theory (DFT) calculations at the B3LYP/6–31 + G(d, p) level yield an essentially linear Br–C1–H–NH3 hydrogen bond with a C-H–N distance of 2.412 Å and a hydrogen bond energy of 2.95 kcal/mol.  相似文献   

13.
1H and 13C NMR chemical shifts were measured for a set of six isomers—the cis and trans 2‐, 3‐, and 4‐methylcyclohexanols. 1H and 13C NMR chemical shifts were computed at the B3LYP, WP04, WC04, and PBE1 density functional levels for the same compounds, taking into account the Boltzmann distribution among conformational isomers (chair–chair forms and hydroxyl rotamers). The experimental versus computed chemical shift values for proton and carbon were compared and evaluated (using linear correlation (r2), total absolute error (|Δδ|T), and mean unsigned error (MUE) criteria) with respect to the relative ability of each method to distinguish between cis and trans stereoisomers for each of the three constitutional isomers. For 13C shift data, results from the B3LYP and PBE1 density functionals were not sufficiently accurate to distinguish all three pairs of stereoisomers, while results using the WC04 functional did do so. For 1H shift data, each of the WP04, B3LYP, and PBE1 methods was sufficiently accurate to make the proper stereochemical distinction for each of the three pairs. Applying a linear correction to the computed data improved both the absolute accuracy and the degree of discrimination for most of the methods. The nature of the cavity definition used for continuum solvation had little effect. Overall, use of proton chemical shift data was more discriminating than use of carbon data. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
The experimental and theoretical vibrational spectra of 2‐fluorophenylboronic acid (2fpba) were studied. The Fourier transform Raman and Fourier transform infrared spectra of the 2fpba molecule were recorded in the solid phase. The structural and spectroscopic analysis of the molecule was carried out by using Hartree‐Fock and density functional harmonic calculations. For the title molecule, only one form was found to be the most stable structure, by using B3LYP level with the 6‐31++G(d,p) basis set. Selected experimental bands were assigned and characterized on the basis of the scaled theoretical wavenumbers by their total energy distribution (TED). The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the 2fpba molecule were calculated using the Gauge‐Invariant‐ atomic orbital (GIAO) method in DMSO solution using IEF‐PCM model and compared with the experimental data. Finally, geometric parameters, vibrational wavenumbers and chemical shifts were compared with available experimental data of the molecule. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Quantum chemical calculations of energies, geometries and vibrational wavenumbers of 2,4‐difluorophenol (2,4‐DFP) were carried out by using ab initio HF and density functional theory (DFT/B3LYP) methods with 6‐311G(d,p) as basis set. The optimized geometrical parameters obtained by HF and DFT calculations are in good agreement with related molecules. The best level of theory in order to reproduce the experimental wavenumbers is the B3LYP method with the 6‐311G(d,p) basis set. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. A detailed interpretation of the infrared and Raman spectra of 2,4‐DFP is also reported. The entropy of the title compound was also performed at HF/6‐311G(d,p) and B3LYP/6‐311G(d,p) levels of theory. The isotropic chemical shift computed by 1H, 13C NMR analyses also shows good agreement with experimental observations. The theoretical spectrograms for FT‐IR and FT‐Raman spectra of the title molecule have been constructed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Push-pull chromophores attached to carbazole based π-conjugating spacers bearing N-alkylamino donors, cyanovinyl and carbethoxy acceptors have been studied by the means of UV-Visible measurements. The intramolecular charge transfer (ICT) of these π-conjugated systems has also been tested by investigating the ability of the solute molecules to undergo shifts in their fluorescence emission maxima with increasing solvent polarity. Density Functional Theory [B3LYP/6-31G(d)] and Time Dependent Density Functional Theory [TD-B3LYP/6-31G(d)] computations have been used to have more understanding of the structural, molecular, electronic and photophysical parameters of push-pull dyes. The largest wavelength difference between the experimental and computed electronic absorption maxima was 45 nm. For emission, a largest difference of 61 nm was observed. The ground state and excited state dipole moments in different solvents were determined using experimental solvatochromic data and computed Onsager radii. The dipole moments of the molecules in the excited state were observed to be higher than in the ground state.  相似文献   

17.
The density functional theory (DFT) is exploited to search the stable conformations of a cyclic pentapeptide called cycloaspeptide G from Cordyceps-colonising fungus Isoria farinose. Its time-dependent version is employed to describe the profiles of electronic circular dichroism (ECD) of the preferred conformation, where the solvent effect in methanol is taken into account on the basis of the polarisable continuum model computation. Four stable conformers are optimised, and the results of the harmonically vibrational frequency calculations illustrate that they are the true minima. In the vibrational CD spectrum at the B3LYP/6-31G* level, the negative peak at 3334 cm?1 has its origin of the NH stretches of the peptide ring. In the ECD spectrum at the B3LYP/6-31G* level, three strong bands are negative, positive, and negative. Since the ECD spectrum at the B3LYP/6-31G* level is remarkably different from that at the B3LYP/6-31G level, it is necessary for the expended functions to be added to the 6-31G basis set.  相似文献   

18.
Correct net charge and protonation pattern in the polyamine backbone is one of the major factors that define the interactions of this class of compounds. 1,12‐diamino‐3,6,9‐triazadodecane (SpmTrien) is a isosteric charge deficient analogue of naturally occurring spermine (Spm) with different biological features. The tautomeric populations of each SpmTrien charge state were estimated with computer simulations, molecular dynamics (MD) and quantum mechanical calculations, and cluster expansions separately. In the computer simulations, tautomeric populations of each charge state were obtained by constrained least‐squares fitting the theoretically calculated (GIAO B3LYP/6‐311 + G**) 15 N NMR chemical shieldings of SpmTrien tautomers to the experimentally measured chemical shifts. Theoretical chemical shieldings were calculated for water complexes of SpmTrien obtained from MD simulations in explicit water. Both methods gave highly similar realistic results. SpmTrien has many major populations of tautomers at biologically relevant charge states of three (+3) and four (+4) thus enabling a large variety of structures for specific ionic interactions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Hasan Tanak 《Molecular physics》2014,112(11):1553-1565
Density functional calculations of the structure, vibrational spectra, molecular electrostatic potential and thermodynamic functions have been performed at the B3LYP/6-311++G(d,p) level of theory for the Schiff base compound 2-[(2,4-Dimethylphenyl)iminomethyl]-6-methylphenol. Experimental and theoretical Fourier transform infrared (FT-IR) studies of the title compound show the preference of enol form, as supported by X-ray analysis results. Using the time-dependent density functional theory (TD-DFT) method, electronic absorption spectra of the compound have been predicted and a good agreement is determined with the experimental ones. To investigate the tautomeric stability, optimisation calculations at B3LYP/6-311++G(d,p) level were performed for the enol and keto forms of the title compound. Calculated results show that its enol form is more stable than that of the keto form. The predicted non-linear optical properties of the title compound are much greater than those of urea. The changes in thermodynamic properties for the formation of the title compound with the temperature ranging from 200 K to 500 K have been obtained using the statistical thermodynamic method. At 298.15 K the change of Gibbs free energy for the formation reaction of the title compound is 37.03 kJ/mol. The title compound cannot be spontaneously produced from the isolated monomers at room temperature. The tautomeric equilibrium constant is also computed as 1.23×10?3 at 298.15 K for enol ? keto tautomerisation of the title compound.  相似文献   

20.
Density functional theory calculations were performed on C82 hydroxylated fullerene. B3LYP and PBE0 functionals with 6-31G** basis set were utilised to get chemical shieldings, chemical shifts and the isotropic Fermi contact coupling on each atomic site. A relation between nuclear magnetic resonance (NMR) properties and reactivity of the molecule, obtained through the electronic Fukui function, was observed. Interestingly, the most stable configurations of OH groups adsorbed on C82 surface were obtained when the hydroxyl groups are adsorbed on deshielded (isotropically and anisotropically) sites. For open-shell systems, a relation between isotropic Fermi contact, spin density and average Fukui function was found, that is, sites with a great amount of Fukui function (analytical and the one obtained through finite difference) and spin density have the largest isotropic Fermi contact coupling data. With the adsorption of the first hydroxyl molecules, spin densities and Fukui functions show preferential sites to adsorb the following OH groups close to previously adsorbed. Additionally, theoretical spectra of chemical shifts of C82(OH)n (n = 1, 2, 3 and 4) were obtained and they were compared with experimental reports, getting a reasonable comparison. For example, regarding 13C NMR chemical shifts obtained in C82OH molecule, 80 ppm (B3LYP) and 79 ppm (PBE0) were calculated on hydroxylated carbon, which is in good agreement with experimental results in C60 fullerols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号