首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Li  B. Z.  Su  X. X.  Guo  L. J.  Lin  J. Q.  Gao  X.  Li  X. K.  Zhang  X. H.  Jin  G. Y.  Sun  G. C. 《Laser Physics》2011,21(6):1061-1063
We report for the first time a coherent orange-red radiation at 616 nm by intracavity sum-frequency generation of the 1080 and 1433 nm laser-lines of two Nd:YAP lasers. Orange-red laser is obtained by using a doubly linear resonator, type-II critical phase matching KTiOPO4 (KTP) crystal sum-frequency mixing. With a total diode pump power of 26.5 W (8.7 W pump power for 1080 nm Nd:YAP laser and 17.8 W pump power for 1433 nm Nd:YAP laser), TEM00 mode orange-red laser at 616 nm of 127 mW is obtained. The power stability in 30 min is better than 3.3%.  相似文献   

2.
We present for the first time a Nd:YVO4 laser emitting at 1064 nm intracavity pumped by a 916 nm diode-pumped Nd:LuVO4 laser. A 809 nm laser diode is used to pump the Nd:LuVO4 crystal emitting at 916 nm, a Nd:YVO4 laser crystal was pumped at 916 nm and lased at 1064 nm. Intracavity sum-frequency mixing at 916 and 1064 nm was then realized in a LiB3O6 (LBO) crystal to reach the blue range. We obtained a continuous-wave output power of 216 mW at 492 nm under 19.6 W of incident pump power at 809 nm.  相似文献   

3.
Yong-Liang Li  Yuan Dong  Yan-Fei Lü 《Optik》2011,122(13):1125-1127
A design of laser-diode array (LDA) end-pumped Nd:YVO4 laser that generates simultaneous laser action at wavelengths 1064 and 1342 nm is presented. Using type-I critical phase matching (CPM) BiB3O6, 593.5 nm continuous-wave (cw) Orange-yellow laser is obtained by 1064 nm and 1342 nm in an intra-cavity sum-frequency mixing. The maximum laser output power of 3.62 W is obtained when an incident pump laser of 27.5 W is used. The optical-to-optical conversion is up to 13.2%. To the best of our knowledge, this is the highest conversion efficiency at 593.5 nm in an intra-cavity sum-frequency Nd:YVO4 laser.  相似文献   

4.
We report for the first time a coherent radiation at 554.7 nm by intracavity sum-frequency generation of 946 nm Nd:YAG laser and 1341 nm Nd:YAP laser. Yellow-green laser is obtained by using a doubly folded cavity, type-II critical phase matching KTP crystal sum-frequency mixing. With total pump power of 36.1 W (17.8 W pump power for 1341 nm Nd:YAP laser and 18.3 W pump power for 946 nm Nd:YAG laser), TEM00 mode yellow-green laser at 554.7 nm of 1.43 W is obtained.  相似文献   

5.
We present for the first time a dual-wavelength laser operation at 1064 and 914 nm in two NdYVO4 crystals. A 879 nm laser diode is used to pump the first Nd:YVO4 crystal emitting at 914 nm, and the second Nd:YVO4 laser emitting at 1064 nm intracavity pumped at 914 nm. A total output power of 4.28 W at the two fundamental wavelengths was achieved at the absorbed pump power of 13.8 W. The M2 values for 914 and 1064 nm lights at the maximum output power were found to be around 1.3 and 1.1, respectively.  相似文献   

6.
分析了Nd:YVO4激光器实现双波长运转及腔内和频的条件,利用一种LD泵浦Nd:YVO4晶体产生1 064 nm和914 nm双波长激光束,采用一个线性平凹腔结构,利用腔内Ⅰ类临界相位匹配LBO和频,获得了连续波输出的全固态激光器。实验采用端面结构,在5.0 W的808 nm泵浦功率下,获得了最高功率为2.5 mW连续波TEM00的激光输出,光-光转换效率为0.05%。  相似文献   

7.
We report for the first time a continuous-wave (CW) orange radiation at 598 nm by intracavity sum-frequency generation of 1341 nm Nd:GdVO4 laser and 1080 nm Nd:YAlO3 (Nd:YAP) laser. Orange laser is obtained by using a doubly cavity, type-II critical phase matching KTP crystal sum-frequency mixing. With total pump power of 36 W, TEM00 mode orange laser at 598 nm of 268 mW is obtained. The orange power stability in 30 min is better than 3.8%.  相似文献   

8.
We report a laser architecture to obtain continuous-wave blue radiation at 488 nm. A 808 nm diodepumped the Nd:YVO4 crystal emitting at 914 nm. A part of the pump power was then absorbed by the Nd:YVO4 crystal. The remaining was used to pump the Nd:YLF crystal emitting at 1047 nm. Intracavity sum-frequency mixing at 914 and 1047 nm was then realized in a LBO crystal to reach the blue radiation. We obtained a continuous-wave output power of 514 mW at 488 nm with a pump laser diode emitting 19.6 W at 808 nm.  相似文献   

9.
We present a laser architecture to obtain continuous-wave blue radiation at 488 nm. A 808 nm diode-pumped the Nd:YVO4 crystal emitting at 914 nm. A part of the pump power was then absorbed by the Nd:YVO4 crystal. The remaining was used to pump the Nd:YLiF4 (Nd:YLF) crystal emitting at 1047 nm. Intracavity sum-frequency mixing at 914 and 1047 nm was then realized in a BiB3O6 (BiBO) crystal to reach the blue radiation. We obtained a continuous-wave output power of 339 mW at 488 nm with a pump laser diode emitting 18.3 W at 808 nm.  相似文献   

10.
A design of LD-pumped Nd:YVO4 laser that generates simultaneous laser action at wavelengths 1064 and 1342 nm by optimizing film design is presented. An optimized continuous-wave (cw) yellow laser at 593.5 nm in room temperature is obtained for the first time. Using type-I critical phase-matching (CPM)LBO crystal, a yellow laser at 593.5 nm is obtained by 1064 and 1342 nm intracavity sum-frequency mixing. The maximum laser output power of 85 mW is obtained when an incident pump laser of 1.8 W is used. The optical-to-optical conversion is up to 4.7%, and the power stability in 24 h is better than ±2.8%.  相似文献   

11.
Fu  Q.  Jiang  H. L. 《Laser Physics》2012,22(5):907-910
We report a continuous-wave (CW) green laser emission by sum-frequency mixing in Nd:YVO4 and Nd:YLF crystals. Using type-II critical phase-matching (CPM) KTP crystal, a green laser at 539 nm is obtained by 914 and 1313 nm intracavity sum-frequency mixing. The maximum laser output power of 388 mW is obtained when an incident pump laser of 18.2 W is used. At the output power level of 388 mW, the output stability is better than 4.6%.  相似文献   

12.
Wu  Y.  Zhang  X. H.  Sun  G. C. 《Laser Physics》2011,21(6):1074-1077
We report for the first time a coherent radiation at 555 nm by intracavity sum-frequency generation of 946 nm Nd:YAG laser and 1343 nm Nd:LuVO4 laser. Yellow-green laser is obtained by using a doubly folded cavity, type-II critical phase matching KTP crystal sum-frequency mixing. With total pump power of 31.9 W (13.7 W pump power for 1343 nm Nd:LuVO4 laser and 18.2 W pump power for 946 nm Nd:YAG laser), TEM00 mode yellow-green laser at 555 nm of 2.35 W is obtained.  相似文献   

13.
An all-solid-state single-longitudinal-mode (SLM) laser at 500.8 nm with 830 mW output power has been demonstrated for the first time. By using a new resonator for doubly resonant, Nd:GdVO4 and Nd:YAG were pumped by two laser diode arrays coupled by optical fiber, respectively. In the two sub-cavities, SLM wavelengths of 1064 and 946 nm were induced by using the twisted-mode technique and then mixed into SLM 500.8 nm laser with sum-frequency technology. The SLM 500.8 nm laser output of 830 mW was obtained at the incident pump power of 20 W for Nd:GdVO4 and 23 W for Nd:YAG. The experimental results showed that the intracavity sum-frequency mixing by twisted-mode technique is an effective method for SLM 500.8 nm laser.  相似文献   

14.
In this paper, a high-power continuous-wave deep blue laser at 447 nm with intracavity tripling was achieved. The deep blue laser at 447 nm is obtained by using a doubly cavity, and type-II critical phase matching KTP crystal for intracavity sum-frequency mixing. Through designing of the cavity, the optimum matching of modes and gains for the two wavelengths was obtained. With incident pump power of 30 W for the Nd:YVO4 crystal and 16 W for the other Nd:YVO4 crystal, the deep blue laser output of 3.5 W at 447 nm with TEM00 mode was obtained, the beam quality M2 value was equal to 1.8 in both horizontal and vertical directions at the maximum output power, and the power stability is better than 3% at the maximum output power during half an hour. The experimental results show that the intracavity sum-frequency mixing by doubly resonant is an effective method for high-power blue laser.  相似文献   

15.
A dual-wavelength continuous-wave (CW) diode-pumped Nd:YVO4 laser that generates simultaneous laser action at the wavelengths 914 and 1342 nm is demonstrated. A total dual-wavelength output power of 1.79 W was achieved at the incident pump power of 18.2 W. Furthermore, intracavity sum-frequency mixing at 914 and 1342 nm was then realized in a LBO crystal to reach the yellow-green range. We obtained a total CW output power of 212 mW at 544 nm.  相似文献   

16.
By using a piece of single-walled carbon nanotube saturable absorber, the performance of the passively Q-switched composite Nd:YVO4 laser has been demonstrated for the first time. The maximum average output power and the shortest pulse width are 1220 mW and 103 ns at the incident pump power of 5.04 W for a 10% transmission of the output coupler. The highest pulse repetition rate of 415.6 kHz and the largest single-pulse energy of 2.94 μJ are also obtained. The composite Nd:YVO4 crystal has more excellent laser performance than the normal Nd:YVO4 crystal at 1064 nm.  相似文献   

17.
We report a laser architecture to obtain continuous-wave (cw) blue radiation at 462 nm. A 808 nm diode-pumped the Nd:YVO4 crystal emitting at 914 nm. A part of the pump power was then absorbed by the Nd:YVO4 crystal. The remaining was used to pump the Nd:CNGG crystal emitting at 935 nm. Intracavity sum-frequency mixing at 914 and 935 nm was then realized in a LiB3O5 (LBO) crystal to reach the blue radiation. We obtained a continuous-wave output power of 892 mW at 462 nm with a pump laser diode emitting 18.4 W at 808 nm.  相似文献   

18.
Yong-liang Li  Yu-lan Zhang 《Optik》2011,122(8):743-745
A sum-frequency yellow-green laser at 554.9 nm is reported by this paper, 946 nm wavelength is obtained from 4F3/2-4I9/2 transition in Nd:YAG and 1342 nm wavelength is obtained from 4F3/2-4I13/2 transition in Nd:YVO4. Using a doubly folded-cavity type-II critical phase matching KTP crystal intra cavity to make 946 nm laser from Nd:YAG and 1342 nm laser from Nd:YVO4 frequency summed, with incident pumped power of 30 W in Nd:YAG and 20 W in Nd:YVO4, TEM00 mode yellow-green laser at 554.9 nm at 1.15 W is obtained and its M2 factor is less than 1.22. The experimental results show that the Nd:YAG and Nd:YVO4 crystals intra-cavity sum-frequency mixing is an effective method for yellow-green laser and it can be applied to other two laser crystals to obtain more all-solid-state lasers with different wavelengths.  相似文献   

19.
A compact and efficient 593.5 nm orange-yellow laser is realized using doubly resonant intracavity sum frequency mixing. Two Nd: YVO4 crystals are employed as the gain crystals. In two sub-cavities, 1064 nm radiation from one Nd: YVO4 and 1342 nm radiation from the other Nd: YVO4 are mixed to generate 593.5 nm orange-yellow laser. In the overlapping of the two cavities, sum frequency mixing is achieved in a type I critical phase matching (CPM) LBO crystal. An output power of 3.2 W at the wavelength of 593.5 nm is obtained with total incident pump power of 38 W. The optical to optical conversion efficiency is up to 8.4% and the stability of the output power is better than 2.48% in 8 h. To the best knowledge, this it the highest watt-level laser at 593.5 nm generated by diode end pump all-solid-state technology.  相似文献   

20.
We report a coherent radiation at 494.5 nm by intra-cavity sum-frequency generation of 912 nm Nd:GdVO4 laser and 1080 nm Nd:CaYAlO4 laser. Blue laser is obtained by using a doubly folded cavity, type-II critical phase matching KTP (KTiOPO4) crystal sum-frequency mixing. With total pump power of 33 W (13.8 W pump power for 1080 nm Nd:CaYAlO4 laser and 19.2 W pump power for 912 nm Nd:GdVO4 laser), TEM00 mode blue laser at 494.5 nm of 1.6 W is obtained. The power stability in 30 min is better than 3.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号