首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
We present a laser architecture to obtain continuous-wave blue radiation at 488 nm. A 808 nm diode-pumped the Nd:YVO4 crystal emitting at 914 nm. A part of the pump power was then absorbed by the Nd:YVO4 crystal. The remaining was used to pump the Nd:YLiF4 (Nd:YLF) crystal emitting at 1047 nm. Intracavity sum-frequency mixing at 914 and 1047 nm was then realized in a BiB3O6 (BiBO) crystal to reach the blue radiation. We obtained a continuous-wave output power of 339 mW at 488 nm with a pump laser diode emitting 18.3 W at 808 nm.  相似文献   

2.
We report a laser architecture to obtain continuous-wave (cw) blue radiation at 462 nm. A 808 nm diode-pumped the Nd:YVO4 crystal emitting at 914 nm. A part of the pump power was then absorbed by the Nd:YVO4 crystal. The remaining was used to pump the Nd:CNGG crystal emitting at 935 nm. Intracavity sum-frequency mixing at 914 and 935 nm was then realized in a LiB3O5 (LBO) crystal to reach the blue radiation. We obtained a continuous-wave output power of 892 mW at 462 nm with a pump laser diode emitting 18.4 W at 808 nm.  相似文献   

3.
We present for the first time a Nd:YVO4 laser emitting at 1064 nm intracavity pumped by a 916 nm diode-pumped Nd:LuVO4 laser. A 809 nm laser diode is used to pump the Nd:LuVO4 crystal emitting at 916 nm, a Nd:YVO4 laser crystal was pumped at 916 nm and lased at 1064 nm. Intracavity sum-frequency mixing at 916 and 1064 nm was then realized in a LiB3O6 (LBO) crystal to reach the blue range. We obtained a continuous-wave output power of 216 mW at 492 nm under 19.6 W of incident pump power at 809 nm.  相似文献   

4.
We present a laser architecture to obtain continuous-wave blue radiation at 489 nm. An 809 nm diode-pumped the Nd:LuVO4 crystal emitting at 916 nm. A part of the pump power was then absorbed by the Nd:LuVO4 crystal. The remaining was used to pump the Nd:YLiF4 (Nd:YLF) crystal emitting at 1047 nm. Intracavity sum-frequency mixing at 916 and 1047 nm was then realized in a LiB3O5 (LBO) crystal to reach the blue radiation. We obtained a continuous-wave output power of 425 mW at 489 nm with a pump laser diode emitting 18.4 W at 809 nm.  相似文献   

5.
We present for the first time a dual-wavelength laser operation at 1064 and 914 nm in two NdYVO4 crystals. A 879 nm laser diode is used to pump the first Nd:YVO4 crystal emitting at 914 nm, and the second Nd:YVO4 laser emitting at 1064 nm intracavity pumped at 914 nm. A total output power of 4.28 W at the two fundamental wavelengths was achieved at the absorbed pump power of 13.8 W. The M2 values for 914 and 1064 nm lights at the maximum output power were found to be around 1.3 and 1.1, respectively.  相似文献   

6.
A dual-wavelength continuous-wave (CW) diode-pumped Nd:YVO4 laser that generates simultaneous laser action at the wavelengths 914 and 1342 nm is demonstrated. A total dual-wavelength output power of 1.79 W was achieved at the incident pump power of 18.2 W. Furthermore, intracavity sum-frequency mixing at 914 and 1342 nm was then realized in a LBO crystal to reach the yellow-green range. We obtained a total CW output power of 212 mW at 544 nm.  相似文献   

7.
J. Gao  X. Yu  B. Wei  X. D. Wu 《Laser Physics》2010,20(7):1590-1593
We present experimental investigation on quasi-three-level Nd:YVO4 laser operation at 914 nm under 879 nm diode pumping directly into emitting level. A maximal output power of 3.0 W under an absorbed pump power of 13.4 W was got, corresponding to an optical conversion efficiency of 22.4% and a slope efficiency of 40.3%. To the best of our knowledge, this is the first report on a Nd:YVO4 laser at 914 nm using rod-type single crystal as the gain medium and end pumped by diode directly into the emitting level.  相似文献   

8.
The continuous-wave high efficiency laser emission of Nd:YVO4 at the fundamental wavelength of 914 nm and its 457 nm second harmonic obtained by intracavity frequency doubling with an LBO nonlinear crystal is investigated under pumping by diode laser at 880 nm into emitting level 4F3/2. 6.5 W at 457 nm with M 2=1.8 was obtained from a 5-mm-thick 0.4 at.% Nd:YVO4 laser medium and a 15-mm-long LBO nonlinear crystal in a Z-type cavity for 18.6 W absorbed pump power. An optical-to-optical efficiency with respect to the absorbed pump power was 0.35. Comparative results obtained for the pump with diode laser at 808 nm, into the highly-absorbing level 4F5/2, are given in order to prove the advantages of the 880 nm wavelength pumping.  相似文献   

9.
A Nd:YVO4 crystal was pumped directly into the emitting level by a laser diode at 914 nm. We achieved an output power of 1.46 W at 1342 nm for an incident pump power of 18.3 W, corresponding to an optical-to-optical conversion efficiency of 8.0%. The fluctuation of the output power was better than 2.3% in the given 30 min. The beam quality M2 factor value was equal to 1.15 at the maximum output power.  相似文献   

10.
X. Yu  R. P. Yan  M. Luo  F. Chen  X. D. Li  J. H. Yu 《Laser Physics》2009,19(10):1960-1963
We demonstrated a diode-end-pumped continuous-wave 914 nm laser using a novel grown-together YVO4/Nd:YVO4 crystal for the first time. A maximum output power at 914 nm of 7.5 W with an optical-optical efficiency of 16.3% and a slope efficiency of 24.3% was obtained when the incident pump power was 46.2 W. The beam quality factor M 2 was 3.2 at the output power of 6.0 W. The quality and specification of the grown-together composite YVO4/Nd:YVO4 crystal should be improved. Meanwhile, energy-transfer upconversion spectrum of the composite YVO4/Nd:YVO4 crystal laser was also investigated.  相似文献   

11.
We report an Yb:Sr5(PO4)3F (Yb:S-FAP) laser emitting at 985 nm intracavity pumped by a 912 nm diode-pumped Nd:GdVO4 laser. A 808 nm diode laser is used to pump the Nd:GdVO4 crystal emitting at 912 nm, and the Yb:S-FAP laser emitting at 985 nm intracavity pumped at 912 nm. With incident pump power of 17.5 W, intracavity second harmonic generation has been demonstrated with a power of 131 mW at 492.5 nm by using a LBO nonlinear crystal.  相似文献   

12.
We report on a continuous-wave Nd:YVO4 oscillator at 1342 nm based on the combination of a grown-together composite crystal YVO4/Nd:YVO4/YVO4 and the 888 nm diode-laser direct pumping for the first time. At the absorbed pump power of 102 W, a maximum average output power of 37.2 W at 1342 nm was obtained, corresponding to an optical-optical conversion efficiency of 36.5% and a high slope efficiency of 63.0%, respectively. To the best of our knowledge, this is the highest output power ever obtained for a 1342 nm Nd:YVO4 oscillator.  相似文献   

13.
It is reported that efficient continuous-wave (CW) red laser generation at 693 nm in a LBO crystal at type-I phase matching direction performed with a diode-pumped Nd:YVO4 laser. With incident pump power of 18.2 W, output power of 278 mW at 693 nm has been obtained using a 10 mm-long LBO crystal. At the output power level of 278 mW, the output stability is better than 2.9%.  相似文献   

14.
High efficiency operation on 457 mm blue laser at room temperature in Nd:YVO4 crystal pumped by a pulsed 808 nm diode-laser is reported in this letter. The influence of different pulse repetition rate and duty cycle on decrease of heat effect and increase of optical-to-optical efficiency has been deeply investigated. The maximum output power of 314 mW has been obtained at the pump power of 4 W. The corresponding optical-to-optical conversion efficiency 11.2% was obtained at the duty cycle of 70%.  相似文献   

15.
We report for the first time a continuous-wave (CW) coherent radiation at 485 nm by intracavity sum-frequency generation of 916 nm Nd:LuVO4 laser and 1030 nm Yb:YAG laser. Blue laser is obtained by using a doubly cavity, type-II critical phase matching KTP crystal sum-frequency mixing. With total pump power of 30.2 W, TEM00 mode blue laser at 485 nm of 179 mW is obtained. The blue power stability in 30 min is better than 3%.  相似文献   

16.
A diode-pumped high-repetition-rate acousto-optically (A-O) Q-switched Nd:YVO4 laser operating at 914 nm was reported in this paper. Employing a compact linear laser cavity, at an operating repetition rate of 10 kHz, a maximum average output power of 2.2 W 914 nm laser was obtained at an incident pump power of 45.3 W, corresponding to an optical conversion efficiency of 4.9% and a slope efficiency of 8.8%. Minimum pulse width of 24 ns and maximum peak power of 8.0 kW of 914 nm laser was also achieved at an incident pump power of 40.8 W. To the best of our knowledge, this is the highest peak power of 914 nm laser at 10 kHz by far. Moreover, the highest operating repetition rate of pulsed 914 nm can even reach 100 kHz.  相似文献   

17.
Fu  Q.  Jiang  H. L. 《Laser Physics》2012,22(5):907-910
We report a continuous-wave (CW) green laser emission by sum-frequency mixing in Nd:YVO4 and Nd:YLF crystals. Using type-II critical phase-matching (CPM) KTP crystal, a green laser at 539 nm is obtained by 914 and 1313 nm intracavity sum-frequency mixing. The maximum laser output power of 388 mW is obtained when an incident pump laser of 18.2 W is used. At the output power level of 388 mW, the output stability is better than 4.6%.  相似文献   

18.
We report a low-threshold continuous-wave self-Raman laser with a composite YVO4/Nd:YVO4/YVO4 crystal. The use of the composite crystal can reduce the thermal effects and achieve the low-threshold and high Raman output operation. The Raman threshold is as low as 2.2 W for the 808-nm diode pump. Under the pump of a diode power of 25.5 W, the highest Raman output of 2.8 W is obtained at 1175 nm, corresponding to a slope efficiency of 12% and a diode-to-Stokes optical conversion efficiency of 11%. The power fluctuation is less than 1.1% under the highest Raman output.  相似文献   

19.
We report a continuous-wave (CW) blue laser emission by sum-frequency mixing in Nd:GdVO4 and Nd:YLF crystals. Using type-I critical phase-matching (CPM) LBO crystal, a blue laser at 490 nm is obtained by 1063 and 908 nm intracavity sum-frequency mixing. The maximum laser output power of 118 mW is obtained when an incident pump laser of 18.2 W is used. At the output power level of 118 mW, the output stability is better than 4.2%.  相似文献   

20.
By using a piece of single-walled carbon nanotube saturable absorber, the performance of the passively Q-switched composite Nd:YVO4 laser has been demonstrated for the first time. The maximum average output power and the shortest pulse width are 1220 mW and 103 ns at the incident pump power of 5.04 W for a 10% transmission of the output coupler. The highest pulse repetition rate of 415.6 kHz and the largest single-pulse energy of 2.94 μJ are also obtained. The composite Nd:YVO4 crystal has more excellent laser performance than the normal Nd:YVO4 crystal at 1064 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号