首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A passively Q-switched all solid-state Nd:LuVO4 1.06 μm laser was demonstrated by using Cr4+:YAG as saturable absorber. The characteristics of average output power, pulse width, repetition rate, pulse energy, and peak power were studied with different output couplings and initial transmission of saturable absorbers. When output coupling with the transmission of 20% was used, the shortest pulse width of 16 ns at the repetition rate of 12.5 kHz was obtained, which results in the pulse energy of 71 μJ and peak power of 4.43 kW with the initial transmission of 70% of Cr4+:YAG crystal.  相似文献   

2.
We report for the first time a laser microfabrication and its characteristics of photonic crystal structure in vitreous silica. It is two-dimensional triangle lattices composed of hollow cylinders with a periodicity of approximately 1.2 μm. Infrared spectroscopic measurements revealed dielectric-periodicity-matched transmission valleys centering approximately at 4100 cm−1 for H-polarization and 4000 cm−1 for Epolarization, respectively.  相似文献   

3.
Accuracy control of three-dimensional Nd:YAG laser shaping by ablation   总被引:2,自引:0,他引:2  
Improving the dimensional accuracy along the optical axis without decreasing the materials removing rate is a key issue in three-dimensional laser shaping. This paper presents a concept for performing three-dimensional laser shaping by directly using machining laser as the photo source of the non-contacting measuring device. Due to the high power measuring photo source and a 1.06 μm bandpass filter, the interference caused by the emission light of ablated surface can be effectively avoided, the delay time is not needed to be inserted between the laser pulse and the measurement. So the measurement will not decrease the material removal rate and productivity. By using this system, the shaping accuracy of 30 μm can be achieved at the removing rate of about 4.0×10−2 mm3/sec for Si3N4 ceramic, both are much better than the results obtained before.  相似文献   

4.
The glasses with the composition of 37.5Li2O–(25 − x)Fe2O3xNb2O5–37.5P2O5 (mol%) (x = 5,10,15) are prepared, and it is found that the addition of Nb2O5 is effective for the glass formation in the lithium iron phosphate system. The glass–ceramics consisting of Nasicon-type Li3Fe2(PO4)3 crystals with an orthorhombic structure are developed through conventional crystallization in an electric furnace, showing electrical conductivities of 3 × 10− 6 Scm− 1 at room temperature and the activation energies of 0.48 eV (x = 5) and 0.51 eV (x = 10) for Li+ ion conduction in the temperature range of 30–200 °C. A continuous wave Nd:YAG laser (wavelength: 1064 nm) with powers of 0.14–0.30 W and a scanning speed of 10 μm/s is irradiated onto the surface of the glasses, and the formation of Li3Fe2(PO4)3 crystals is confirmed from XRD analyses and micro-Raman scattering spectra. The crystallization of the precursor glasses is considered as new route for the fabrication of Li3Fe2(PO4)3 crystals being candidates for use as electrolyte materials in lithium ion secondary batteries.  相似文献   

5.
Photoinduced non-linear optical effects in large-sized (up to 25 nm) nanocrystallites (NC) of Ge-doped Bi12TiO20 (BTO:Ge) incorporated within olygoether photopolymer matrix have been studied. Photoinduced second harmonic generation (PISHG) was measured. Nd:YAG pulsed laser (λ=1.06 μm) was used as a source of photoinducing light. As a fundamental light source for the SHG and two-photon absorption, Er:LiYF4 laser (λ=2.065 μm) was used. We have found that with increasing IR pump power density, the output doubled frequency SHG signal (λ=1.03 μm) increases and achieves its maximum value at the pump power density about 0.45 GW/cm2 and NC size about 12 nm.The values of second-order optical susceptibilities were almost 20% larger than for the pure BTO NC single crystals. With decreasing temperature below 60 K, the SHG signal increases achieving maximal value at LHeT.  相似文献   

6.
We describe a dual-channel laser velocimeter based on a single laser source and a single set of carrier wave generation optics. The apparatus is intended for simultaneous vibration measurements on several points of instable objects, such as biological specimens or micro electronic mechanical systems, so that instantaneous phase relationships and amplitude ratios can be determined. Our instrument presently allows measurements on two points of interest which can be arbitrarily chosen. The optical design allows expansion to at least four independent channels. At a maximal velocity amplitude of 52 mm s−1, the velocity resolution and the detection limit equal 2.6 μm s−1 Hz−1/2. Even with object points less than 0.4 mm apart, channel cross-talk is less than −78 dB at all frequencies.  相似文献   

7.
The aim of this study is to determine the radioactivity levels as a baseline for further studies and to obtain the distribution patterns of radioactivity in lake surface water around Izmir/Turkey. In this study, surface water samples were collected from three lakes around Izmir–Turkey. Surface water samples were analyzed for pH, mV conductivity and alkalinity content. The gross alpha/beta and uranium concentrations were investigated in the collected lake water samples. Mean gross alpha and gross beta activity concentrations in the surface water were found to be between (0.03 and 2.62) Bq l−1 for Karagol Lake, (0.75 and 2.35) Bq l−1 for Golcuk Lake, (0.03 and 1.77) Bq l−1 for Cakalbogaz Lake, respectively. Uranium concentration varied between (0.05 and 900) μg l−1 for Karagol Lake, (0.05 and 0.95) μg l−1 for Golcuk Lake and (3.33 and 10) μg l−1 for Cakalbogaz Lake. Radioactivity contour maps were produced and their data were evaluated statistically.  相似文献   

8.
A CW NYAB laser at 1.06 μm end-pumped by a high-power diode-laser-array has been demonstrated. At the incident pump power of 11 W, a maximum output power of 3.2 W was achieved, resulting in an optical conversion efficiency of 29.1%, and average slope efficiency of 37.5%. The output beam quality factor was measured to be M2=1.9. The internal losses caused by the NYAB crystal were measured to be 0.035 cm−1. The NYAB crystal was also found to exhibit very strong thermal lensing under high-power end-pumped conditions.  相似文献   

9.
In recent years multi-spectral imagery is steadily growing popularity. Multi-channel imaging which includes short-wave infrared (SWIR), mid-wave infrared (MWIR) and long-wave infrared (LWIR) systems are useful for threat detection, tracking, thermal signature detection and terrain analysis. In this paper, a broad band antireflection coating on ZnS substrate, simultaneously effective in SWIR, MWIR and LWIR is reported. The coating design approach was evolved using gradient index concept, where refractive index varies gradually from incident media to the ZnS (n = 2.2) substrate. The gradient index profile depicted by 4th degree polynomial n(t) = −0.45t4 + 1.9t3 − 2.7t2 + 1.9t + 1,where n(t) is the refractive index at the distance t from ambient, and t is the thickness in micron. The profile is best approximated by eight discrete step index layers, whose first layer is thorium fluoride (n = 1.42; lowest index stable material available). Other seven layers are replaced by two equivalent layer system of real materials thorium fluoride and zinc sulphide. Final 15 layers design is deposited by e-beam evaporation. The maximum layer thickness was restricted around 0.7 μm to overcome the stress problem in the film. This 15 layers coating has shown average transmission 95% in 0.9–10.5 μm spectral band having peak 99% at 9 μm.  相似文献   

10.
Novel formulas of transmission functions are presented, some parameters are optimized, and transmission characteristics are analyzed for a polymer microring resonant wavelength multiplexer around the central wavelength of 1.55 μm with the wavelength spacing of 5.6 nm and with eight vertical output channels. The computed results show that the designed device possesses some excellent features including the 3 dB bandwidth of 0.25 μm, weaker background light of 3.8×10−4, smaller inserted loss of less than 0.6 dB, and lower crosstalk below −20 dB for every vertical output channel.  相似文献   

11.
Quasi-simultaneous laser action in the UV (0.337 μm) and the IR (10.6 μm) was observed from a pulsed laser with a sliding discharge plasma cathode. The laser operates at atmospheric pressure, with a gas mixture of CO2/N2/He, at a 0.26/0.50/4.0 lmin−1 flow rate. Output energies of 30 mJ in the IR and 0.35 mJ in the UV were obtained, from a laser discharge volume of 38.0×1.0×2.8 cm3. The optimum gas mixtures have been determined and the temporal behavior of the discharge parameters, the performance characteristics of the laser and the beam spatial distributions were investigated.  相似文献   

12.
A three-wavelength pulsed laser for dental application is developed. The laser houses the Nd:YAG resonator (1.06/1.32 μm) for soft-tissue treatment and Er:YAG resonator (2.94 μm) for caries removal and fits and fissure treatment. Two heads share the cooling unit and two identical high-voltage power supply modules in order to achieve compactness. The Nd:YAG laser has 10 W at 1.06 μm and 7 W at 1.32 μm with a pulse duration of 100 μs. An Er:YAG laser of 2.94 μm has 3.5 W, 20 Hz and a pulse duration of 250 μs. The beams are delivered through fibers and the laser size is 75×55×32.5 cm.  相似文献   

13.
Silicon nanostructures, called Si nanowhiskers, have been successfully synthesized on Si(1 0 0) substrate by high vacuum electron beam annealing (EBA). Detailed analysis of the Si nanowhisker morphology depending on annealing temperature, duration and the temperature gradients applied in the annealing cycle is presented. A correlation was found between the variation in annealing temperature and the nanowhisker height and density. Annealing at 935 °C for 0 s, the density of nanowhiskers is about 0.2 μm−2 with average height of 2.4 nm grow on a surface area of 5×5 μm, whereas more than 500 nanowhiskers (density up to 28 μm−2) with an important average height of 4.6 nm for field emission applications grow on the same surface area for a sample annealed at 970 °C for 0 s. At a cooling rate of −50 °C s−1 during the annealing cycle, 10–12 nanowhiskers grew on a surface area of 5×5 μm, whereas close to 500 nanowhiskers grew on the same surface area for samples annealed at the cooling rate of −5 °C s−1. An exponential dependence between the density of Si nanowhiskers and the cooling rate has been found. At 950 °C, the average height of Si nanowhiskers increased from 4.0 to 6.3 nm with an increase of annealing duration from 10 to 180 s. A linear dependence exists between the average height of Si nanowhiskers and annealing duration. Selected results are presented showing the possibility of controlling the density and the height of Si nanowhiskers for improved field emission properties by applying different annealing temperatures, durations and cooling rates.  相似文献   

14.
Common thermoplastic films used in the packaging industry have a thickness lower than 100 μm, and present low absorption to CO2 laser radiation. This characteristic renders the use of cutting parameters, predicted by models developed for thicker thermoplastics inappropriate. In addition, the usual procedures involve the use of an assisting gas, responsible for removing the melted material, which, when processing thin films, induces changes in position in the material. A new theoretical model describing the temperature distribution on thin thermoplastic material during laser cutting was later developed. The heat conduction was solved analytically by the Green function method and heating and cooling thermal stress evolution was taken into consideration. The laser beam diameter over the samples provides the possibility of obtaining two cut operations: a simple cut, on beam focus, and a cut with welding, defocusing the beam. Engineering parameters predicted by the model were applied to cutting superposed high- and low-density polyethylene and polypropylene samples, transparent and white, with thicknesses between 10 and 100 μm, and experimentally validated.Proper modeling and the introduction of a reflective substrate under the samples allowed the improvement of process efficiency and the achievement of cutting operations up to 20 m s−1, and cut with welding up to 14 m s−1; an order of magnitude of improvement on industrial speeds previously attained for this operation.  相似文献   

15.
A new technique of cavity enhanced absorption spectroscopy is described. Molecular absorption spectra are obtained by recording the transmission maxima of the successive TEMoo resonances of a high-finesse optical cavity when a Distributed Feedback Diode Laser is tuned across them. A noisy cavity output is usually observed in such a measurement since the resonances are spectrally narrower than the laser. We show that a folded (V-shaped) cavity can be used to obtain selective optical feedback from the intracavity field which builds up at resonance. This induces laser linewidth reduction and frequency locking. The linewidth narrowing eliminates the noisy cavity output, and allows measuring the maximum mode transmissions accurately. The frequency locking permits the laser to scan stepwise through the successive cavity modes. Frequency tuning is thus tightly optimized for cavity mode injection. Our setup for this technique of Optical-Feedback Cavity-Enhanced Absorption Spectroscopy (OF-CEAS) includes a 50 cm folded cavity with finesse ∼20 000 (ringdown time ∼20 μs) and allows recording spectra of up to 200 cavity modes (2 cm−1) using 100 ms laser scans. We obtain a noise equivalent absorption coefficient of ∼5×10−10 cm−1 for 1 s averaging over scans, with a dynamic range of four orders of magnitude.  相似文献   

16.
We report a diode-end-pumped passively Q-switched Nd:GdVO4 laser operating at 1.06 μm with In0.25Ga0.75As being the saturable absorber as well as an output coupler. Q-switched pulses with a pulse duration of 20 ns, pulse energy 4.2 μJ and pulse repetition rate 200 kHz were produced, corresponding to peak power of 210 W.  相似文献   

17.
Static characteristics of two different structured InAlGaAs/InAlAs superlattice avalanche photodiodes (SLAPDs) cooled by liquid nitrogen were evaluated at a wavelength of 1.5 μm. The dark current of the SLAPD having a thick superlattice layer of 0.504 μm was 5 × 10−13 A. This was successively reduced by four orders of magnitude compared to that of the thin layer SLAPD of 0.231 μm at a breakdown voltage of around 20 V. The thickened layer was effective in suppressing tunneling dark current. An output current of 1.7×l0−12 A at a bias voltage of 15 V was measured for an optical input with a wavelength of 1.5 μm and a signal power of 1 × 10−12 W. This showed a sharp distinction from the dark current.  相似文献   

18.
A 1.57 μm eye-safe laser is realized by placing a KTP crystal into a diode-end-pumped, acousto-optically (AO) Q-switched Nd:YVO4 laser. For the first time, the 1.06 μm pumping laser with a concave–concave cavity is used to lower the threshold of the intracavity-pumped optical parametric oscillator (IPOPO). The pumping threshold and output characteristics of the OPO are analyzed by changing repetition rate of the AO Q-switch and output mirrors with different transmissivity at 1.57 μm. The results show that the pumping threshold will decrease with the lower output transmissivity and the lower repetition rate, but the narrower output pulse width can be obtained with the higher output transmissivity.  相似文献   

19.
Highly ordered TiO2/Ti nanotube arrays were fabricated by anodic oxidation method in 0.5 wt% HF. Using prepared TiO2/Ti nanotube arrays deposited Ni nanoparticles as substrate, high quality diamond-like carbon nanorods (DLCNRs) were synthesized by a conventional method of chemical vapor deposition at 750 °C in nitrogen atmosphere. DLCNRs were analyzed by filed emission scanning electron microscopy and Raman spectrometer. It is very interesting that DLCNRs possess pagoda shape with the length of 3–10 μm. Raman spectra show two strong peaks about 1332 cm−1 and 1598 cm−1, indicating the formation of diamond-like carbon. The field emission measurements suggest that DLCNRs/TiO2/Ti has excellent field emission properties, a low turn-on field about 3.0 V/μm, no evident decay at 3.4 mA/cm2 in 480 min.  相似文献   

20.
Microdroplets of 15-μm diameter are subjected to ultra-short laser pulses of intensities up to 1015Wcm−2 to produce hot dense plasma. The hot electrons produced in the microdroplet plasma result in efficient generation of hard X-rays in the range 50–150keV at an irradiance as low as 8×1014Wcm−2. The X-ray source efficiency is estimated to be about 2 ×10−7%. A prepulse that is about 11ns ahead of the main pulse strongly influences the droplet plasma and the resulting X-ray emission. For a similar laser prepulse and intensity, no measurable hard X-ray emission is observed when the laser is focused on a solid target of similar composition and this indicates that liquid droplet targets are best suited for hard X-ray generation in laser–plasma interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号