首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The stability and electronic structures of AlN nanowires with and without N-vacancy are investigated using firstprinciples calculations.We find that there is an inverse correlation between formation energy and diameter in ideal AlN nanowires.After calculating the formation energies of N-vacancy at different sites in AlN nanowires with different diameters,we find that the N-vacancy prefers to stay at the surface of the nanowires and it is easier to fabricate them under Al-rich conditions.Through studying the electronic properties of AlN nanowires with N-vacancies,we further find that there are two isolated bands in the deep part of the band gap,one of them is fully occupied and the other is half occupied.The charge density indicates that the half-fully occupied band arises from the Al at the surface,and this atom becomes an active centre.  相似文献   

2.
The molecular dynamics simulation method is applied to investigate the rarefied gas flow in a submicron channel with surface roughness which is modelled by an array of triangle modules. The boundary conditions are found to be determined not only by the Knudsen number but also the roughness, which implies that the breakdown of the Maxwell slip model under the conditions that the surface roughness is comparable to the molecular mean free path. The effects of the rarefaction and the surface roughness on the boundary conditions and the flow characteristics are strongly coupled. The flow friction increases with increasing roughness and with decreasing Knudsen number.  相似文献   

3.
This paper have performed molecular static calculations with the quantum corrected Sutten Chen type many body potential to study size effects on the elastic modulus of Au nanowires with [100], [110] and [111] crystallographic directions, and to explore the preferential growth orientation of Au nanowires. The main focus of this work is the size effects on their surface characteristics. Using the common neighbour analysis, this paper deduces that surface region approximately consists of two layer atoms. Further, it extracts the elastic modulus of surface, and calculate surface energy of nanowire. The results show that for all three directions the Young's modulus of nanowire increases as the diameter increases. Similar trend has been observed for the Young's modulus of surface. However, the atomic average potential energy of nanowire shows an opposite change. Both the potential and surface energy of [110] nanowire are the lowest among all three orlentational nanowires, which helps to explain why Au nanowires possess a [110] preferred orientation during the experimental growth proceeds.  相似文献   

4.
朱林利 《中国物理 B》2015,24(1):16201-016201
We investigate the effects of pre-stress and surface tension on the electron–acoustic phonon scattering rate and the mobility of rectangular silicon nanowires.With the elastic theory and the interaction Hamiltonian for the deformation potential,which considers both the surface energy and the acoustoelastic effects,the phonon dispersion relation for a stressed nanowire under spatial confinement is derived.The subsequent analysis indicates that both surface tension and pre-stress can dramatically change the electron–acoustic phonon interaction.Under a negative(positive)surface tension and a tensile(compressive)pre-stress,the electron mobility is reduced(enhanced)due to the decrease(increase)of the phonon energy as well as the deformation-potential scattering rate.This study suggests an alternative approach based on the strain engineering to tune the speed and the drive current of low-dimensional electronic devices.  相似文献   

5.
Influence of Mass Transport on Formation of Si—Nanostructures   总被引:1,自引:0,他引:1       下载免费PDF全文
Nanowire-like,condyloid-like and flakes of Si-nanostructures were synthesized by thermal evaporation under different mass transport conditions by changing the ambient pressure.The structural analysis shows that a higher mass transport rate is not favourite for the formation of fine single crytalline nanowires when the substrate placed closely to the thermal vapour source,The higher mass transport rate can induce a lower Si partial pressure near the source and hence results in a lower supersaturation near the substrate.Experimental results reveal that the formation of Si-nanowires is not controlled by mass transport but by surface process.The driving force on the surface in the key factor for the formation of well-crystallized nanowires.  相似文献   

6.
Liquid metal free surface flows (films, jets and droplets) are considered as diverter/ limiter system and first wall in fusion reactor, but the knowledge Of liquid metal free surface under a non-uniform magnetic field is very limited. In this article, the stability of a jet flow under a gradient magnetic field is investigated, and its MHD effects are the top concern. Based on numerical simulation and experimental results, a simplified model is developed to analyze the MHD effects of the jet flow and to explain the reason why it can keep stable under a strong non-uniform magnetic field.  相似文献   

7.
张金风  郝跃 《中国物理》2006,15(10):2402-2406
In the GaN-based heterostructures, this paper reports that the strong electric fields induced by polarization effects at the structure boundaries complicate the electric--static equilibrium and the boundary conditions. The basic requirements of electric--static equilibrium for the heterostructure systems are discussed first, and it is deduced that in the application of the coupled Schr\"{o}dinger--Poisson model to the heterostructures of electric--static equilibrium state, zero external electric field guarantees the overall electric neutrality, and there is no need to introduce the charge balance equation. Then the relation between the screening of the polar charges in GaN-based heterostructures and the possible boundary conditions of the Poisson equation is analysed, it is shown that the various boundary conditions are equivalent to each other, and the surface charge, which can be used in studying the screening of the polar charges, can be precisely solved even if only the conduction band energy is correctly known at the surface. Finally, through the calculations on an AlGaN/GaN heterostructure with typical structure parameters by the coupled Schr\"{o}dinger--Poisson model under the various boundary conditions, the correctness of the above analyses are validated.  相似文献   

8.
Highly oriented Ag(TCNQ) nanowires have been prepared on Si(111) wafer at 1O0℃ by the vapour-transport reaction between silver and TCNQ without any other catalyst. X-ray diffraction analysis shows that the composition and crystal structure of the obtained nanostructure were Ag(TCNQ) crystalline. Most Ag(TCNQ) nanowires were grown uniformly and vertically on the substrate with diameters ranging from 50 to 30Onto and the lengths measuring from 2 to 50μm by scanning electron microscopy. Ag particles were observed on the substrate from pure thin Ag film heated under the same conditions as used in synthesizing the nanowires. Nucleation and short Ag(TCNQ) nanowires were prepared by controlling the reaction time, providing direct evidence of the growth mechanism in a nanometre scale. The growth process was explained according to the vapour-liquid-solid model. The gradient of temperature and the densely distributed Ag particles may contribute to the vertically aligned growth. These results will be helpful for the controllable synthesis of Ag(TCNQ) nanowires.  相似文献   

9.
Using the Stillinger--Weber (SW) potential model, we investigate the thermal stability of pristine silicon nanowires based on classical molecular dynamics (MD) simulations. We explore the structural evolutions and the Lindemann indices of silicon nanowires at different temperatures in order to unveil atomic-level melting behaviour of silicon nanowires. The simulation results show that silicon nanowires with surface reconstructions have higher thermal stability than those without surface reconstructions, and that silicon nanowires with perpendicular dimmer rows on the two (100) surfaces have somewhat higher thermal stability than nanowires with parallel dimmer rows on the two (100) surfaces. Furthermore, the melting temperature of silicon nanowires increases as their diameter increases and reaches a saturation value close to the melting temperature of bulk silicon. The value of the Lindemann index for melting silicon nanowires is 0.037.  相似文献   

10.
This paper has solved the Chester modified heat conduction equation of the different relaxation time Υ value under different temperature conditions, different boundary conditions and the different initial conditions by different means of methods. These solutions can help to obtain temperature field of laser thermal effects.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号