首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Recordings were made from white-beaked dolphins in Icelandic waters using a four-hydrophone array in a star configuration. The acoustic signals were amplified and sampled to a hard disk at a rate of 800 kHz per channel. The 3 and 10 dB beamwidths were calculated to be 8 degrees and 10 degrees, respectively, indicating a narrower transmission beam for white-beaked dolphins than that reported for bottlenose dolphins (Tursiops truncatus). The beamwidth was more similar to that found for belugas (Delphinapterus lucas). The measured beam pattern included large side lobes, perhaps due to the inclusion of off-axis clicks, even after applying several criteria to select only on-axis clicks. The directivity index was calculated to be 18 dB when using all data for angles from 0 degrees-50 degrees. The calculated sound radiation from a circular piston with a radius of 6 cm driven by a white-beaked dolphin click had a beam pattern very similar to the measured beam pattern for the main transmission lobe of the white-beaked dolphin. The directivity index was 29 dB. This is the first attempt to estimate the directionality index of dolphins in the field.  相似文献   

2.
Most of our understanding of dolphin echolocation has come from studies of captive dolphins performing various echolocation tasks. Recently, measurements of echolocation signals in the wild have expanded our understanding of the characteristics of these signals in a natural setting. Measuring undistorted dolphin echolocation signals with free swimming dolphins in the field can be a challenging task. A four hydrophone array arranged in a symmetrical star pattern was used to measure the echolocation signals of four species of dolphins in the wild. Echolocation signals of the following dolphins have been measured with the symmetrical star array: white-beaked dolphins in Iceland, Atlantic spotted dolphins in the Bahamas, killer whales in British Columbia, and dusky dolphins in New Zealand. There are many common features in the echolocation signals of the different species. Most of the signals had spectra that were bimodal: two peaks, one at low frequencies and another about an octave higher in frequency. The source level of the sonar transmission varies as a function of 20logR, suggesting a form of time-varying gain but on the transmitting end of the sonar process rather than the receiving end. The results of the field work call into question the issue of whether the signals used by captive dolphins may be shaped by the task they are required to perform rather than what they would do more naturally.  相似文献   

3.
王朋  袁俊舫  黄勇  刘纪元 《应用声学》2014,33(4):340-348
由于自主小平台声纳孔径有限,对声纳探测的分辨率的提高有所限制。小平台的机动可以有效的与声纳探测方法相结合来提高声纳探测性能。针对这一特点,提出一种基于多普勒频移技术的被动合成孔径声纳探测方法。该方法根据自主小平台的机动所引起声纳的接收信号多普勒频移的变化,进行目标的频率与方位联合估计。本文将自主小平台的机动引入到波束形成技术当中形成一种新的被动合成孔径技术。数值仿真表明,该方法可以有效的进行目标方位估计,并且获得较高的方位分辨率,改善了自主小平台的探测性能。  相似文献   

4.
Efforts to study the social acoustic signaling behavior of delphinids have traditionally been restricted to audio-range (<20 kHz) analyses. To explore the occurrence of communication signals at ultrasonic frequencies, broadband recordings of whistles and burst pulses were obtained from two commonly studied species of delphinids, the Hawaiian spinner dolphin (Stenella longirostris) and the Atlantic spotted dolphin (Stenella frontalis). Signals were quantitatively analyzed to establish their full bandwidth, to identify distinguishing characteristics between each species, and to determine how often they occur beyond the range of human hearing. Fundamental whistle contours were found to extend beyond 20 kHz only rarely among spotted dolphins, but with some regularity in spinner dolphins. Harmonics were present in the majority of whistles and varied considerably in their number, occurrence, and amplitude. Many whistles had harmonics that extended past 50 kHz and some reached as high as 100 kHz. The relative amplitude of harmonics and the high hearing sensitivity of dolphins to equivalent frequencies suggest that harmonics are biologically relevant spectral features. The burst pulses of both species were found to be predominantly ultrasonic, often with little or no energy below 20 kHz. The findings presented reveal that the social signals produced by spinner and spotted dolphins span the full range of their hearing sensitivity, are spectrally quite varied, and in the case of burst pulses are probably produced more frequently than reported by audio-range analyses.  相似文献   

5.
Whistle emissions were recorded from small groups of marine tucuxi dolphins (Sotalia fluviatilis) in two beaches located in an important biological reserve in the Cananéia estuary (25 degrees 03'S, 47 degrees 58'W), southeastern Brazil. A total of 17 h of acoustic data was collected when dolphins were engaged in a specific feeding foraging activity. The amount of 3235 whistles was recorded and 40% (n=1294) were analyzed. Seven acoustic whistle parameters were determined: duration (ms), number of inflection points, start and end frequency (kHz), minimum and maximum frequency (kHz), and frequency range (kHz). Whistles with up to four inflection points were found. Whistles with no inflection points and rising frequency corresponded to 85% (n=1104) of all analyzed whistles. Whistle duration varied from 38 to 627 ms (mean=229.6+/-109.9 ms), with the start frequency varying between 1 and 16 kHz (mean=8.16+/-3.0 kHz) and the end frequency between 2 and 18 kHz (mean=14.35+/-3.0 kHz). The importance of this study requires an accurate measurement of the whistles' emissions in an unusual foraging feeding behavior situation on two beaches where several tucuxis, mostly mother-calf pairs, are frequently present. These two beaches are located in a federal and state environment Environmental Protected Area threatened by the progressive increase of tourism.  相似文献   

6.
At present, the fundamental frequencies of signals of most commercially available acoustic alarms to deter small cetaceans are below 20 kHz, but it is not well ascertained whether higher frequencies have a deterrent effect on bottlenose dolphins (Tursiops truncatus). Two captive bottlenose dolphins housed in a floating pen were subjected to a continuous pure tone at 50 kHz with a source level of 160 ± 2 dB (re 1 μPa, rms). The behavioral responses of dolphins were judged by comparing surfacing distance relative to the sound source, number of surfacings, and number of echolocation clicks produced, during forty 15 min baseline periods with forty 15 min test periods (four sessions per day, 40 sessions in total). On all 10 study days, surfacing distance and the number of surfacings increased while click production decreased during broadcasts of test sound. The avoidance threshold sound pressure level for a continuous 50 kHz tone for the bottlenose dolphins, in the context of this study, was estimated to be 144 ± 2 dB (re 1 μPa, rms). The results indicated that a continuous 50 kHz tonal signal can deter bottlenose dolphins from an area.  相似文献   

7.
Spectral parameters were used to discriminate between echolocation clicks produced by three dolphin species at Palmyra Atoll: melon-headed whales (Peponocephala electra), bottlenose dolphins (Tursiops truncatus) and Gray's spinner dolphins (Stenella longirostris longirostris). Single species acoustic behavior during daytime observations was recorded with a towed hydrophone array sampling at 192 and 480 kHz. Additionally, an autonomous, bottom moored High-frequency Acoustic Recording Package (HARP) collected acoustic data with a sampling rate of 200 kHz. Melon-headed whale echolocation clicks had the lowest peak and center frequencies, spinner dolphins had the highest frequencies and bottlenose dolphins were nested in between these two species. Frequency differences were significant. Temporal parameters were not well suited for classification. Feature differences were enhanced by reducing variability within a set of single clicks by calculating mean spectra for groups of clicks. Median peak frequencies of averaged clicks (group size 50) of melon-headed whales ranged between 24.4 and 29.7 kHz, of bottlenose dolphins between 26.7 and 36.7 kHz, and of spinner dolphins between 33.8 and 36.0 kHz. Discriminant function analysis showed the ability to correctly discriminate between 93% of melon-headed whales, 75% of spinner dolphins and 54% of bottlenose dolphins.  相似文献   

8.
Franciscana dolphins are small odontocetes hard to study in the field. In particular, little is known on their echolocation behavior in the wild. In this study we recorded 357 min and analyzed 1019 echolocation signals in the Rio Negro Estuary, Argentina. The clicks had a peak frequency at 139 kHz, and a bandwidth of 19 kHz, ranging from 130 to 149 kHz. This is the first study describing echolocation signals of franciscana dolphins in the wild, showing the presence of narrow-band high frequency signals in these dolphins. Whether they use other vocalizations to communicate or not remains uncertain.  相似文献   

9.
Receiving beam patterns of a harbor porpoise were measured in the horizontal plane, using narrow-band frequency modulated signals with center frequencies of 16, 64, and 100 kHz. Total signal duration was 1000 ms, including a 200 ms rise time and 300 ms fall time. The harbor porpoise was trained to participate in a psychophysical test and stationed itself horizontally in a specific direction in the center of a 16-m-diameter circle consisting of 16 equally-spaced underwater transducers. The animal's head and the transducers were in the same horizontal plane, 1.5 m below the water surface. The go/no-go response paradigm was used; the animal left the listening station when it heard a sound signal. The method of constants was applied. For each transducer the 50% detection threshold amplitude was determined in 16 trials per amplitude, for each of the three frequencies. The beam patterns were not symmetrical with respect to the midline of the animal's body, but had a deflection of 3-7 degrees to the right. The receiving beam pattern narrowed with increasing frequency. Assuming that the pattern is rotation-symmetrical according to an average of the horizontal beam pattern halves, the receiving directivity indices are 4.3 at 16 kHz, 6.0 at 64 kHz, and 11.7 dB at 100 kHz. The receiving directivity indices of the porpoise were lower than those measured for bottlenose dolphins. This means that harbor porpoises have wider receiving beam patterns than bottlenose dolphins for the same frequencies. Directivity of hearing improves the signal-to-noise ratio and thus is a tool for a better detection of certain signals in a given ambient noise condition.  相似文献   

10.
针对无源声呐中宽带相干处理对邻近弱目标分辨能力仍不足的问题,提出一种相干聚焦后稀疏空间谱求解的宽带超分辨方位估计方法。首先将不同频点数据相干聚焦到参考频点,构成多测量矢量稀疏求解问题,然后采用二阶锥规划内点算法进行稀疏空间谱拟合,实现了宽带弱目标超分辨方位估计。仿真试验结果表明,该方法在弱目标分辨和方位估计精度方面优于宽带非相干和相干信号子空间高分辨处理方法。32元拖曳阵海试数据的处理结果验证了该方法的优越性能,同时说明了该方法在无源声呐探测中应用的可行性。   相似文献   

11.
高强混凝土单轴压缩声发射频率特征试验研究   总被引:2,自引:1,他引:2  
为研究高强混凝土破裂前声发射信号的频率特征,对C60、C70、C80高强混凝土试件进行单轴压缩下的高、低频双通道声发射试验,得到破裂过程的力学参数和声发射参数,探求高强混凝土不同加载阶段声发射信号频率的分布特征。研究表明,三种高强混凝土在峰值应力前,高、低频通道声发射信号均集中在特定的频段内;临近峰值应力时,高、低频通道的声发射信号频率向低频段移动,同时优势频段内的频率趋于分散,这可作为预测高强混凝土破坏的前兆信息。  相似文献   

12.
For monostatic sonar using long pulsed tone signals, the problem of evaluating the spectrum of reverberation due to sound wave scattering by a rough sea surface is solved. Relatively simple computational schemes are proposed, which make it possible (i) to transform the three-dimensional spectra of surface waves to the frequency-angular characteristics of reverberation and (ii) to choose the optimal operating frequency band for a Doppler sonar from the point of view of reverberation. For typical wind wave characteristics measured in shallow water areas, the spectral levels of reverberation are estimated in the frequency band of acoustic signals within 0.4?C2 kHz.  相似文献   

13.
This study reports the source levels of clicks recorded from free-ranging white-beaked dolphins (Lagenorhynchus albirostris Gray 1846). A four-hydrophone array was used to obtain sound recordings. The hydrophone signals were digitized on-line and stored in a portable computer. An underwater video camera was used to visualize dolphins to help identify on-axis recordings. The range to a dolphin was calculated from differences in arrival times of clicks at the four hydrophones, allowing for calculations of source levels. Source levels in a single click train varied from 194 to 211 dB peak-to-peak (p-p) re: 1 microPa. The source levels varied linearly with the log of range. The maximum source levels recorded were 219 dB (p-p) re: 1 microPa.  相似文献   

14.
The use of remote autonomous passive acoustic recorders (PAR) to determine the distribution of dolphins at a given locations has become very popular. Some investigators are using echolocation clicks to gather information on the presence of dolphins and to identify species. However, in all of these cases, the PAR probably recorded mainly off-axis clicks, even some from behind the animals. Yet there is a very poor understanding of the beam pattern and the click waveform and spectrum from different azimuths around the animal's body. The beam pattern completely around an echo locating dolphin was measured at 16 different but equally spaced angles in the horizontal plane using an 8-hydrophone array in sequence. Eight channels of data were digitized simultaneously at a sampling rate of 500 kHz. The resulting beam patterns in both planes showed a continuous drop off in sound pressure with azimuth around the animal and reached levels below -50 dB relative to the signal recorded on the beam axis. The signals began to break up into two components at angles greater than ± 45° in the horizontal plane. The center frequency dropped off from its maximum at 0° in a non-uniform matter.  相似文献   

15.
The present study aimed at determining the detection capabilities of an acoustic observation system to recognize porpoises under local riverine conditions and compare the results with sighting observations. Arrays of three to five acoustic data loggers were stationed across the main channel of the Tian-e-zhou Oxbow of China's Yangtze River at intervals of 100-150 m to record sonar signals of free-ranging finless porpoises (Neophocaena phocaenoides). Acoustic observations, concurrent with visual observations, were conducted at two occasions on 20-22 October 2003 and 17-19 October 2004. During a total of 42 h of observation, 316 finless porpoises were sighted and 7041 sonar signals were recorded by loggers. The acoustic data loggers recorded ultrasonic signals of porpoises clearly, and detected the presence of porpoises with a correct detection level of 77.6% and a false alarm level of 5.8% within an effective distance of 150 m. Results indicated that the stationed passive acoustic observation method was effective in detecting the presence of porpoises and showed potential in estimating the group size. A positive linear correlation between the number of recorded signals and the group size of sighted porpoises was indicated, although it is faced with some uncertainty and requires further investigation.  相似文献   

16.
水声信号处理领域新进展   总被引:5,自引:2,他引:3       下载免费PDF全文
本文介绍近30年来水声信号处理领域理论研究的新进展和在声纳设计中的应用。包括水声信号建模、声场匹配、海洋波导和内波现象的探索和研究、声矢量场信息获取和处理,低频水声信道的时/空相关特性,水下目标辐射噪声的不变特征量提取和检测技术,水下语音、图像传输和抗干扰技术。同时概述,声纳设计的前沿领域:大孔径拖曳线列阵声纳、高分辨力合成孔径声纳、深海传呼机等的发展情况。  相似文献   

17.
Zhi-Bin Han 《中国物理 B》2022,31(5):54301-054301
In the towed line array sonar system, the tow ship noise is the main factor that affects the sonar performance. Conventional noise cancelling methods assume that the noise is towards the endfire direction of the array. An acoustic experiment employing a towed line array is conducted in the western Pacific Ocean, and a strange bearing-splitting phenomenon of the tow ship noise is observed in the array. The tow ship noise is split into multiple noise signals whose bearings are distributed between 10° and 90° deviating from the endfire direction. The multiple interferences increase the difficulty in recognizing the target for the sonar operator and noise cancellation. Therefore, making the mechanism clear and putting forward the tow ship noise splitting bearing estimation method are imperative. In this paper, the acoustic multi-path structure of the tow ship in deep water is analyzed. Then it is pointed out that the bearing-splitting phenomenon is caused by the main lobe of direct rays and bottom-reflected rays, as well as several side lobes of direct rays. Meanwhile, the indistinguishability between the elevation angle and the bearing angle due to the axial symmetry of a strict horizontal line array causes the bearing to deviate from the endfire direction. Based on the theory above, a method of estimating bearing of the tow ship noise in deep water is proposed. The theoretical analysis results accord with the experimental results, which helps to identify the target and provide correct initial bearing guidance for noise cancelation methods.  相似文献   

18.
The relationship between the bandwidth of a signal and the correlation of that signal with its ocean surface reflected arrival, a quantity we term frequency correlation, has been investigated experimentally and compared with two theories. Decorrelation of wideband surface scattered signals is a direct consequence of time spread. The acoustic measurement utilized a very short pure tone signal, from which time spread has been estimated, and four broadband signals with different bandwidths, for which correlation with the transmitted signal has been measured. An environment-driven model developed by Dahl was used to predict time spread, which agreed favorably with our time spread measurements. The model was also employed in two theories that predict frequency correlation. The first, a theory published by Reeves in 1974, is based upon the ratio of signal temporal resolution to total time spread. This theory compared well with our measurements for 1 kHz bandwidth signals, but is not applicable for signal bandwidths greater than about 2 kHz. The second, a theory developed by Ziomek, models ocean acoustic propagation as transmission through a linear system. This theory agreed well with our frequency correlation measurements for signal bandwidths of 1-22 kHz.  相似文献   

19.
The low resolution of Fourier two-dimensional spatial temporal spectrum estimation and the insufficient sample size of sonar space time sampling data often caused difficulties in high-resolution space time spectrum estimation. Aiming to solve this problem, we proposed a high-resolution angle-Doppler imaging method and designed an anti-reverberation space time filter based on the sparse recovery of underwater acoustic signals. The proposed imaging method established the spatial temporal sparse representation model of array signal under the condition of few observation samples of single measurement vector(SMV), and reconstructed the high-resolution angle-Doppler profile of echo and reverberation through the matching pursuit(MP) algorithm and basis pursuit(BP) algorithm. By utilizing the space time distribution characteristics of echo and reverberation and the prior information of sonar rangecell under test(RUT), a reverberation dictionary composed of special space time guidance vectors was designed, and was used to reconstruct the reverberation and formed an anti-reverberation space time filter to suppress the reverberation interference of angle-Doppler plane. Computer simulations indicated that, under two conditions of forward and side-view array of moving sonar, the single measurement vector of sonar array was successfully used in the reverberation background to reconstruct the high-resolution angle-Doppler profile of low-speed moving target multi-spot echo. Its frequency resolution had a better performance than the Fourier resolution and the angle resolution broke through the Rayleigh limit of the array, the resolution was obviously superior to the Fourier space time spectrum estimation.  相似文献   

20.
The distance at which active naval sonar signals can be heard by harbor porpoises depends, among other factors, on the hearing thresholds of the species for those signals. Therefore the hearing sensitivity of a harbor porpoise was determined for 1 s up-sweep and down-sweep signals, mimicking mid-frequency and low-frequency active sonar sweeps (MFAS, 6-7 kHz band; LFAS, 1-2 kHz band). The 1-2 kHz sweeps were also tested with harmonics, as sonars sometimes produce these as byproducts of the fundamental signal. The hearing thresholds for up-sweeps and down-sweeps within each sweep pair were similar. The 50% detection threshold sound pressure levels (broadband, averaged over the signal duration) of the 1-2 kHz and 6-7 kHz sweeps were 75 and 67 dB re 1 μPa(2), respectively. Harmonic deformation of the 1-2 kHz sweeps reduced the threshold to 59 dB re 1 μPa(2). This study shows that the presence of harmonics in sonar signals can increase the detectability of a signal by harbor porpoises, and that tonal audiograms may not accurately predict the audibility of sweeps. LFAS systems, when designed to produce signals without harmonics, can operate at higher source levels than MFAS systems, at similar audibility distances for porpoises.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号